Medical large language models are susceptible to targeted misinformation attacks

被引:3
|
作者
Han, Tianyu [1 ]
Nebelung, Sven [1 ]
Khader, Firas [1 ]
Wang, Tianci [1 ]
Mueller-Franzes, Gustav [1 ]
Kuhl, Christiane [1 ]
Foersch, Sebastian [2 ]
Kleesiek, Jens [3 ]
Haarburger, Christoph [4 ]
Bressem, Keno K. [5 ,6 ,7 ,8 ]
Kather, Jakob Nikolas [9 ,10 ,11 ]
Truhn, Daniel [1 ]
机构
[1] Univ Hosp Aachen, Dept Diag & Intervent Radiol, Aachen, Germany
[2] Univ Med Ctr Johannes Gutenberg, Inst Pathol, Mainz, Germany
[3] Univ Med Essen, Inst AI Med, Essen, Germany
[4] Ocumeda GmbH, Munich, Germany
[5] Charite Univ Med Berlin, Dept Radiol, Berlin, Germany
[6] Free Univ Berlin, Berlin, Germany
[7] Humboldt Univ, Berlin, Germany
[8] Charite Univ Med Berlin, Berlin Inst Hlth, Berlin, Germany
[9] Tech Univ Dresden, Else Kroener Fresenius Ctr Digital Hlth EKFZ, Dresden, Germany
[10] Univ Hosp Dresden, Dept Med 1, Dresden, Germany
[11] Univ Hosp Heidelberg, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
基金
美国国家卫生研究院; 欧洲研究理事会;
关键词
All Open Access; Gold;
D O I
10.1038/s41746-024-01282-7
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Large language models (LLMs) have broad medical knowledge and can reason about medical information across many domains, holding promising potential for diverse medical applications in the near future. In this study, we demonstrate a concerning vulnerability of LLMs in medicine. Through targeted manipulation of just 1.1% of the weights of the LLM, we can deliberately inject incorrect biomedical facts. The erroneous information is then propagated in the model's output while maintaining performance on other biomedical tasks. We validate our findings in a set of 1025 incorrect biomedical facts. This peculiar susceptibility raises serious security and trustworthiness concerns for the application of LLMs in healthcare settings. It accentuates the need for robust protective measures, thorough verification mechanisms, and stringent management of access to these models, ensuring their reliable and safe use in medical practice.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Large language models (LLMs) and the institutionalization of misinformation
    Garry, Maryanne
    Chan, Way Ming
    Foster, Jeffrey
    Henkel, Linda A.
    TRENDS IN COGNITIVE SCIENCES, 2024, 28 (12) : 1078 - 1088
  • [2] On the Risk of Misinformation Pollution with Large Language Models
    Pan, Yikang
    Pan, Liangming
    Chen, Wenhu
    Nakov, Preslav
    Kan, Min-Yen
    Wang, William Yang
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 1389 - 1403
  • [3] Medical large language models are vulnerable to data-poisoning attacks
    Alber, Daniel Alexander
    Yang, Zihao
    Alyakin, Anton
    Yang, Eunice
    Rai, Sumedha
    Valliani, Aly A.
    Zhang, Jeff
    Rosenbaum, Gabriel R.
    Amend-Thomas, Ashley K.
    Kurland, David B.
    Kremer, Caroline M.
    Eremiev, Alexander
    Negash, Bruck
    Wiggan, Daniel D.
    Nakatsuka, Michelle A.
    Sangwon, Karl L.
    Neifert, Sean N.
    Khan, Hammad A.
    Save, Akshay Vinod
    Palla, Adhith
    Grin, Eric A.
    Hedman, Monika
    Nasir-Moin, Mustafa
    Liu, Xujin Chris
    Jiang, Lavender Yao
    Mankowski, Michal A.
    Segev, Dorry L.
    Aphinyanaphongs, Yindalon
    Riina, Howard A.
    Golfinos, John G.
    Orringer, Daniel A.
    Kondziolka, Douglas
    Oermann, Eric Karl
    NATURE MEDICINE, 2025, 31 (02) : 618 - 626
  • [4] Adversarial Attacks on Large Language Models
    Zou, Jing
    Zhang, Shungeng
    Qiu, Meikang
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2024, 2024, 14887 : 85 - 96
  • [5] Preventing and Detecting Misinformation Generated by Large Language Models
    Liu, Aiwei
    Sheng, Qiang
    Hu, Xuming
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 3001 - 3004
  • [6] Truth and Regret: Large Language Models, the Quran, and Misinformation
    Bhojani, Ali-Reza
    Schwarting, Marcus
    THEOLOGY AND SCIENCE, 2023, 21 (04) : 557 - 563
  • [7] Explaining Misinformation Detection Using Large Language Models
    Pendyala, Vishnu S.
    Hall, Christopher E.
    ELECTRONICS, 2024, 13 (09)
  • [8] Benchmarking medical large language models
    Bakhshandeh, Sadra
    NATURE REVIEWS BIOENGINEERING, 2023, 1 (08): : 543 - 543
  • [9] Large Language Models in Targeted Sentiment Analysis for Russian
    Rusnachenko, N.
    Golubev, A.
    Loukachevitch, N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (07) : 3148 - 3158
  • [10] Humans vs large language models: An assessment of evaluating online dermatological misinformation
    Fanous, A. H.
    Le, M.
    Rezaei, S.
    Xu, S.
    Ko, J.
    Lipoff, J.
    Daneshjou, R.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2024, 144 (08) : S130 - S130