Improved YOLOv7 based apple target detection in complex environment

被引:0
|
作者
Mo, Henghui [1 ]
Wei, Linjing [1 ]
机构
[1] College of Information Science and Technology, Gansu Agricultural University, Lanzhou,730070, China
关键词
Equalizers - Feature Selection - Harvesters;
D O I
10.3785/j.issn.1008-973X.2024.12.004
中图分类号
学科分类号
摘要
Robotic harvesters face challenges in identifying apples under complex natural conditions such as unstable lighting, high fruit diversity, and severe leaf occlusion, which impedes the capture of key features, reducing harvesting efficiency and accuracy. An enhanced apple detection algorithm based on the YOLOv7 model for complex scenarios was proposed. A limited contrast adaptive histogram equalization technique was employed to enhance the contrast of apple images, reducing the background interference and clarifying the target contours. A multi-scale hybrid adaptive attention mechanism was introduced. The features were decomposed and reconstructed, and the spatial and channel attention directives were synergistically integrated to optimize multi-layer feature modeling over various distances, thereby boosting the model’s capability to extract apple features and resist background noise. Full-dimensional dynamic convolution was implemented to refine the feature selection process through a meticulous attention mechanism. The number of detection heads was increased to address the challenges of detecting small targets. The Meta-ACON activation function was used to optimize the attention allocation during feature extraction process. Experimental results demonstrated that the improved YOLOv7 model, achieved average accuracy and recall rates of 85.7% and 87.0%, respectively. Compared to Faster R-CNN, SSD, YOLOv5, and the original YOLOv7, the average detection precision was improved by 15.2, 7.5, 4.5, and 2.5 percentage points, and the average recall was improved by 13.7, 6.5, 3.6, and 1.3 percentage points, respectively. The model exhibits exceptional performance, providing robust technical support for apple growth monitoring and mechanical harvesting research. © 2024 Zhejiang University. All rights reserved.
引用
收藏
页码:2447 / 2458
相关论文
共 50 条
  • [11] Fruit Target Recognition and Maturity Detection Based on Improved YOLOv7
    Chen Q.
    Li R.
    Hu L.
    Zhang Y.
    Computer-Aided Design and Applications, 2024, 21 (S25): : 156 - 170
  • [12] Enhanced YOLOv7 for Improved Underwater Target Detection
    Lu, Daohua
    Yi, Junxin
    Wang, Jia
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (07)
  • [13] Improved remote sensing image target detection based on YOLOv7
    XU Shuanglong
    CHEN Zhihong
    ZHANG Haiwei
    XUE Lifang
    SU Huijun
    Optoelectronics Letters, 2024, 20 (04) : 234 - 242
  • [14] Improved remote sensing image target detection based on YOLOv7
    Shuanglong Xu
    Zhihong Chen
    Haiwei Zhang
    Lifang Xue
    Huijun Su
    Optoelectronics Letters, 2024, 20 : 234 - 242
  • [15] Research on apple leaf pathological detection system based on improved YOLOv7
    Cuil, Songbo
    Ma, Jixin
    Zhang, Yong
    Sun, Xiaodong
    Cao, Fang
    Qu, Tao
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1341 - 1346
  • [16] Small target flame detection algorithm based on improved YOLOv7
    Niu, Shaoshan
    Zhu, Yun
    Wang, Jianyu
    Xu, Zhengxing
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (05)
  • [17] Improved remote sensing image target detection based on YOLOv7
    Xu, Shuanglong
    Chen, Zhihong
    Zhang, Haiwei
    Xue, Lifang
    Su, Huijun
    OPTOELECTRONICS LETTERS, 2024, 20 (04) : 234 - 242
  • [18] Tea Buds Detection in Complex Background Based on Improved YOLOv7
    Meng, Junquan
    Kang, Feng
    Wang, Yaxiong
    Tong, Siyuan
    Zhang, Chenxi
    Chen, Chongchong
    IEEE ACCESS, 2023, 11 : 88295 - 88304
  • [19] An Apricot Detection Algorithm in Complex Environments Based on Improved YOLOv7
    Guo, Qiang
    Ma, Chi
    Hu, Hui
    IAENG International Journal of Computer Science, 2024, 51 (12) : 2135 - 2144
  • [20] Apple inflorescence recognition of phenology stage in complex background based on improved YOLOv7
    Chen, Jincheng
    Ma, Benxue
    Ji, Chao
    Zhang, Jing
    Feng, Qingchun
    Liu, Xin
    Li, Yujie
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 211