Improving wind power modelling through granular spatial and temporal bias correction of reanalysis data

被引:0
|
作者
Benmoufok, Ellyess F. [1 ]
Warder, Simon C. [1 ]
Zhu, Elizabeth [1 ]
Bhaskaran, B. [3 ]
Staffell, Iain [2 ]
Piggott, Matthew D. [1 ]
机构
[1] Department of Earth Science and Engineering, Imperial College London, London,SW7 2AZ, United Kingdom
[2] Centre for Environmental Policy, Imperial College London, London,SW7 1NE, United Kingdom
[3] Shell Research Ltd, Shell Centre, London,SE1 7NA, United Kingdom
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.energy.2024.133759
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin
    Terink, W.
    Hurkmans, R. T. W. L.
    Torfs, P. J. J. F.
    Uijlenhoet, R.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2010, 14 (04) : 687 - 703
  • [32] Comparison of Reanalysis, Analysis and Forecast datasets with measured wind data for a Wind Power Project in Jhimpir, Pakistan
    Tahir, Zia ul Rehman
    Asim, Muhammad
    Jamil, Saqib
    Shad, Rizwan
    Hayat, Nasir
    Moaz, Ali
    Akram, Muhammad Talha
    Safyan, Muhammad
    WINDEUROPE CONFERENCE 2018 WITHIN THE GLOBAL WIND SUMMIT, 2018, 1102
  • [33] Evaluation and Bias Correction of the ERA5 Reanalysis over the United States for Wind and Solar Energy Applications
    Wilczak, James M.
    Akish, Elena
    Capotondi, Antonietta
    Compo, Gilbert P.
    ENERGIES, 2024, 17 (07)
  • [34] Spatial and Temporal Wind Power Forecasting by Case-Based Reasoning Using Big-Data
    De Caro, Fabrizio
    Vaccaro, Alfredo
    Villacci, Domenico
    ENERGIES, 2017, 10 (02):
  • [35] Modelling wind power spatial-temporal correlation in multi-interval optimal power flow: A sparse correlation matrix approach
    Fang, Xin
    Hodge, Bri-Mathias
    Du, Ershun
    Zhang, Ning
    Li, Fangxing
    APPLIED ENERGY, 2018, 230 : 531 - 539
  • [36] Dependence of trajectory accuracy on the spatial and temporal densities of wind data
    Lee, TY
    Park, SW
    Kim, SB
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1997, 49 (02) : 199 - 215
  • [37] Improving the Spatial Bias Correction Algorithm in SMOS Image Reconstruction Processor: Validation of Soil Moisture Retrievals With In Situ Data
    Khazaal, Ali
    Richaume, Philippe
    Cabot, Francois
    Anterrieu, Eric
    Mialon, Arnaud
    Kerr, Yann H.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01): : 277 - 290
  • [38] Temporal and Spatial Variability of Wind Resources in the United States as Derived from the Climate Forecast System Reanalysis
    Yu, Lejiang
    Zhong, Shiyuan
    Bian, Xindi
    Heilman, Warren E.
    JOURNAL OF CLIMATE, 2015, 28 (03) : 1166 - 1183
  • [39] Wind Power Forecast Based on Transformers and Clustering of Wind Farms with Temporal and Spatial Interdependence
    Lima, Fabio
    Ren, Tsang Ing
    Costa, Alexandre
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [40] Wind Power Scenario Generation for Multiple Wind Farms Considering Temporal and Spatial Correlations
    Zhao S.
    Jin T.
    Li Z.
    Liu J.
    Li Y.
    Dianwang Jishu/Power System Technology, 2019, 43 (11): : 3997 - 4004