Geometrically frustrated self-assembly of hyperbolic crystals from icosahedral nanoparticles

被引:0
|
作者
Cheng, Nan [1 ]
Sun, Kai [1 ]
Mao, Xiaoming [1 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Geometric frustration is a fundamental concept in various areas of physics, and its role in self-assembly processes has recently been recognized as a source of intricate self-limited structures. Here we present an analytic theory of the geometrically frustrated self-assembly of regular icosahedral nanoparticle based on the non-Euclidean crystal {3,5,3} formed by icosahedra in hyperbolic space. By considering the minimization of elastic and repulsion energies, we characterize prestressed morphologies in this self-assembly system. Notably, the morphology exhibits a transition that is controlled by the size of the assembled cluster, leading to the spontaneous breaking of rotational symmetry. © 2024 American Physical Society;
D O I
10.1103/PhysRevE.110.054132
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Geometric frustration is a fundamental concept in various areas of physics, and its role in self-assembly processes has recently been recognized as a source of intricate self-limited structures. Here we present an analytic theory of the geometrically frustrated self-assembly of regular icosahedral nanoparticle based on the non-Euclidean crystal { 3 , 5, 3} formed by icosahedra in hyperbolic space. By considering the minimization of elastic and repulsion energies, we characterize prestressed morphologies in this self-assembly system. Notably, the morphology exhibits a transition that is controlled by the size of the assembled cluster, leading to the spontaneous breaking of rotational symmetry.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Self-assembly of photonic crystals from polymer colloids
    Zhang, Junhu
    Sun, Zhiqiang
    Yang, Bai
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2009, 14 (02) : 103 - 114
  • [22] Self-assembly of nanoparticles at interfaces
    Roldughin, VI
    USPEKHI KHIMII, 2004, 73 (02) : 123 - 156
  • [23] Self-assembly of superparamagnetic nanoparticles
    Ningzhong Bao
    Arunava Gupta
    Journal of Materials Research, 2011, 26 : 111 - 121
  • [24] Self-assembly of superparamagnetic nanoparticles
    Bao, Ningzhong
    Gupta, Arunava
    JOURNAL OF MATERIALS RESEARCH, 2011, 26 (02) : 111 - 121
  • [25] Self-Assembly of Nanoparticles: A Snapshot
    Weiss, Paul S.
    Kotov, Nicholas A.
    ACS NANO, 2014, 8 (04) : 3101 - 3103
  • [26] Self-assembly of rodlike nanoparticles
    Sharma, Vivek
    Srinivasarao, Mohan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [27] Self-Assembly of Nanoparticles at Interfaces
    Yang Pinghui
    Sun Wei
    Hu Si
    Chen Zhongren
    PROGRESS IN CHEMISTRY, 2014, 26 (07) : 1107 - 1119
  • [28] Self-assembly of nanoparticles at interfaces
    Boeker, Alexander
    He, Jinbo
    Emrick, Todd
    Russell, Thomas P.
    SOFT MATTER, 2007, 3 (10) : 1231 - 1248
  • [29] Directed Self-Assembly of Nanoparticles
    Grzelczak, Marek
    Vermant, Jan
    Furst, Eric M.
    Liz-Marzan, Luis M.
    ACS NANO, 2010, 4 (07) : 3591 - 3605
  • [30] Self-assembly of lattices with high structural complexity from a geometrically simple molecule
    Yamagishi, Hiroshi
    Sato, Hiroshi
    Hori, Akihiro
    Sato, Yohei
    Matsuda, Ryotaro
    Kato, Kenichi
    Aida, Takuzo
    SCIENCE, 2018, 361 (6408) : 1242 - 1245