Compact and Wide-Beamwidth Waveguide Filtering Antenna With Two Transmission Zeros

被引:0
|
作者
Singhal, Dristi [1 ]
Dhwaj, Kirti [1 ]
机构
[1] Indian Inst Technol Delhi, Ctr Appl Res Elect, New Delhi 110016, India
来源
关键词
Filtering; Antennas; Ellipsoids; Couplings; Dielectric resonator antennas; Phased arrays; Loaded antennas; Compact footprint; dual-mode dielectric resonator (DMDR); temperature-stable; transmission zeros (TZs); wide beamwidth;
D O I
10.1109/LAWP.2024.3417455
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A compact dual-mode dielectric resonator (DMDR)loaded evanescent-mode waveguide filtering antenna with twotransmission zeros (TZs) is presented. The design methodologyconsists of using a pair of degenerate transverse magnetic modes ofellipsoid DMDR alongwith source-to-aperture coupling to generatetwo transmission poles and two TZs-one TZ at each side ofthe passband-in the filtering response. The prototype of filteringantenna is designed to operate at \boldmathf0=8.15GHz with a10 dB return-loss bandwidth of 1.35% and an appreciable realizedgain (RG) of 4.8 dBi. The two TZs (\boldmathfTZ1=7.9GHzand \boldmathfTZ2=9GHz) are responsible for providing sharpselectivity with a low shape factor value of 1.6 at 10/3 dB. Moreover,the proposed small-volume (0.055 lambda 30,where lambda 0is the free spacewavelength atf0) filtering antenna radiates with a wide beamwidthof118 degrees in E-plane. The temperature stability analysis of filteringantenna results in low drift values of 2.08 ppm/degrees Cand 46.1 ppm/degrees Cforf0and RG, respectively, when temperature varies from-25 degrees Cto 75 degrees C. Finally the filtering antenna is fed by a standardpropagating waveguide, making it apt for high-power applications
引用
收藏
页码:3872 / 3876
页数:5
相关论文
共 50 条
  • [31] COMPACT SECOND-ORDER LTCC SUBSTRATE INTEGRATED WAVEGUIDE FILTER WITH TWO TRANSMISSION ZEROS
    Xu, Z. Q.
    Shi, Y.
    Yang, B. C.
    Wang, P.
    Tian, Z.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2012, 26 (5-6) : 795 - 805
  • [32] COMPACT CIRCULARLY POLARIZED MICROSTRIP ANTENNA WITH WIDE BEAMWIDTH FOR COMPASS SATELLITE SERVICE
    Deng, J. -Y.
    Yin, Y. -Z.
    Huang, Y. -H.
    Ma, J.
    Liu, Q. -Z.
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2009, 11 (113-118): : 113 - 118
  • [33] Development of compact wide beamwidth folded dipole antenna for indoor positioning system
    Neetu
    Jyothirlatha P.
    Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 2019, 78 (19): : 1729 - 1736
  • [34] Compact Circularly Polarized Patch Antenna With Wide Axial-Ratio Beamwidth
    Wang, Meng-Shuang
    Zhu, Xiao-Qi
    Guo, Yong-Xin
    Wu, Wen
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (04): : 714 - 718
  • [35] 5G mmWave Dualstrate Broad Bandwidth and Wide-beamwidth Conformal Antenna for On-Body Wearable Applications
    Kulkarni, Jayshri
    Garner, Brian
    Li, Yang
    2023 IEEE TEXAS SYMPOSIUM ON WIRELESS AND MICROWAVE CIRCUITS AND SYSTEMS, WMCS, 2023,
  • [36] Compact and single-feed circularly polarised microstrip antenna with wide beamwidth and axial-ratio beamwidth
    He, Shouyin
    Deng, Jiahao
    ELECTRONICS LETTERS, 2017, 53 (15) : 1013 - 1014
  • [37] Design of a Wide-Beamwidth Pixelated Dielectric Resonator Antenna Using a Modified Stepped-Impedance Filter to Suppress Harmonics
    Lee, Dong Geun
    Jeong, Taeyong
    Hwang, Keum Cheol
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [38] Filtering phase shifter with wide bandwidth and multiple transmission zeros
    Nie, Yi
    Zhang, Wei
    Shi, Jin
    ELECTRONICS LETTERS, 2020, 56 (15) : 773 - 775
  • [39] Integrated Substrate Gap Waveguide Wideband Bandpass Filter with Two Transmission Zeros and Wide Stopband
    Yang, Jie
    Shen, Dongya
    Zhang, Xiupu
    2019 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT 2019), 2019,
  • [40] Single-Fed Wide-Beamwidth Circularly Polarized Antenna Using Reflector-Loaded Bent Dielectric Resonator
    Zhang T.
    Liu H.
    Fang S.
    Wang Z.
    Progress in Electromagnetics Research Letters, 2023, 109 : 65 - 73