Compact and Wide-Beamwidth Waveguide Filtering Antenna With Two Transmission Zeros

被引:0
|
作者
Singhal, Dristi [1 ]
Dhwaj, Kirti [1 ]
机构
[1] Indian Inst Technol Delhi, Ctr Appl Res Elect, New Delhi 110016, India
来源
关键词
Filtering; Antennas; Ellipsoids; Couplings; Dielectric resonator antennas; Phased arrays; Loaded antennas; Compact footprint; dual-mode dielectric resonator (DMDR); temperature-stable; transmission zeros (TZs); wide beamwidth;
D O I
10.1109/LAWP.2024.3417455
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A compact dual-mode dielectric resonator (DMDR)loaded evanescent-mode waveguide filtering antenna with twotransmission zeros (TZs) is presented. The design methodologyconsists of using a pair of degenerate transverse magnetic modes ofellipsoid DMDR alongwith source-to-aperture coupling to generatetwo transmission poles and two TZs-one TZ at each side ofthe passband-in the filtering response. The prototype of filteringantenna is designed to operate at \boldmathf0=8.15GHz with a10 dB return-loss bandwidth of 1.35% and an appreciable realizedgain (RG) of 4.8 dBi. The two TZs (\boldmathfTZ1=7.9GHzand \boldmathfTZ2=9GHz) are responsible for providing sharpselectivity with a low shape factor value of 1.6 at 10/3 dB. Moreover,the proposed small-volume (0.055 lambda 30,where lambda 0is the free spacewavelength atf0) filtering antenna radiates with a wide beamwidthof118 degrees in E-plane. The temperature stability analysis of filteringantenna results in low drift values of 2.08 ppm/degrees Cand 46.1 ppm/degrees Cforf0and RG, respectively, when temperature varies from-25 degrees Cto 75 degrees C. Finally the filtering antenna is fed by a standardpropagating waveguide, making it apt for high-power applications
引用
收藏
页码:3872 / 3876
页数:5
相关论文
共 50 条
  • [1] A Substrate Integrated Waveguide Wide-Beamwidth Antenna for 5G Communications
    He, Xiaoyuan
    Feng, Botao
    2019 IEEE INTERNATIONAL WORKSHOP ON ELECTROMAGNETICS: APPLICATIONS AND STUDENT INNOVATION COMPETITION (IWEM2019), 2019,
  • [2] A Wide-Beamwidth and Multilinear Polarized Dielectric Resonator Antenna
    Zhang, Zekui
    Liu, Yanhui
    Peng, Yang
    Ruan, Xuexuan
    Chen, Shu-Lin
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2024, 23 (11): : 3584 - 3588
  • [3] A Dual-Circularly Polarized Antenna with Wide-Beamwidth
    Huang, Bing-Bing
    Liu, Neng-Wu
    Fu, Guang
    Xia, Liang-Xin
    2021 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2021, : 22 - 24
  • [4] Compact Circularly Polarized Wide-Beamwidth Fern-Fractal-Shaped Microstrip Antenna for Vehicular Communication
    Mondal, Tapas
    Maity, Sandip
    Ghatak, Rowdra
    Chaudhuri, Sekhar Ranjan Bhadra
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (06) : 5126 - 5134
  • [5] A Compact Single-Feed Circularly Polarized Microstrip Antenna with Symmetric and Wide-Beamwidth Radiation Pattern
    Ye, Xihong
    He, Mang
    Zhou, Pingyuan
    Sun, Houjun
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2013, 2013
  • [6] A Compact Wideband Waveguide Filtering Antenna with Transmission Zero
    Haider, Iqram
    Basu, Ananjan
    Koul, Shiban Kishen
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2024, 119 : 59 - 65
  • [7] A Dual-band Wide-beamwidth WLAN Access Point Antenna
    Ta, Son Xuat
    Choo, Hosung
    Park, Ikmo
    2013 INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY (IWAT), 2013, : 71 - 74
  • [8] A Compact Wideband Dipole Antenna With Wide Beamwidth
    Chang, Lei
    Chen, Ling-Lu
    Zhang, Jian-Qiang
    Chen, Zhuang-Zhi
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (09): : 1701 - 1705
  • [9] A Ka-Band Antenna Array Based on Wide-Beamwidth Magnetoelectric Dipole
    Tang, Zhourui
    Dong, Yuandan
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (03): : 501 - 505
  • [10] A compact waveguide filtering structure with transmission zeros for multi-beam satellites
    Accatino, L.
    Bertin, G.
    Macchiarella, G.
    2017 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2017, : 733 - 736