Precursor Prediction and Early Warning of Power MOSFET Failure Using Machine Learning With Model Uncertainty Considered

被引:0
|
作者
Hou, Yuluo [1 ,2 ]
Lu, Chang [1 ,2 ]
Abbas, Waseem [1 ]
Seid Ibrahim, Mesfin [3 ]
Waseem, Muhammad [4 ]
Hung Lee, Hiu [1 ]
Loo, Ka-Hong [4 ]
机构
[1] Ctr Adv Reliabil & Safety, Pak Shek Kok, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Aviat Serv Res Ctr, Hung Hom, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Dept Elect Engn, Hung Hom, Hong Kong, Peoples R China
关键词
Semiconductor device modeling; Predictive models; MOSFET; Uncertainty; Data models; Long short term memory; Hidden Markov models; Power electronics; Mathematical models; Logic gates; Bayesian neural network (BNN); machine learning; model uncertainty; power metal-oxide-semiconductor field-effect transistor (MOSFET); precursor prediction; reliability; RELIABILITY;
D O I
10.1109/JESTPE.2024.3476980
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As the core component of power electronic systems, health monitoring of metal-oxide-semiconductor field-effect transistor (MOSFET) is extremely crucial. In this article, a hybrid failure precursor prediction model based on machine learning techniques is proposed. It consists of an isolation forest method and a long short-term memory (LSTM) network. The proposed model extracts information from different aspects of the input data to make predictions and can be sensitive to abnormal data behavior. By detecting the abnormality in the curve and predicting its future behavior, the model can give early warning of the power MOSFET failure and help avoid unexpected accidents. Besides, the model uncertainty is discussed. Two main factors that affect the model uncertainty of the proposed model are evaluated. To reduce the model uncertainty, a Bayesian neural network (BNN) is used to quantify the uncertainty of the proposed model with different parameters. The performance of the proposed model is verified based on the power MOSFET data collected from the accelerated life tests (ALTs). The experimental results indicate satisfying performances of the proposed model, because it can not only give early warning of MOSFET failures but also provide more stable prediction results with less model uncertainty compared with other existing models.
引用
收藏
页码:5762 / 5776
页数:15
相关论文
共 50 条
  • [21] Failure prediction of turbines using machine learning algorithms
    Kumar, R. Sachin
    Ram, S. Sakthiya
    Jayakar, S. Arun
    Kumar, T. K. Senthil
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 1175 - 1182
  • [22] Prediction of creep failure time using machine learning
    Soumyajyoti Biswas
    David Fernandez Castellanos
    Michael Zaiser
    Scientific Reports, 10
  • [23] Prediction of creep failure time using machine learning
    Biswas, Soumyajyoti
    Castellanos, David Fernandez
    Zaiser, Michael
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [24] Failure prediction of turbines using machine learning algorithms
    Kumar, R. Sachin
    Ram, S. Sakthiya
    Jayakar, S. Arun
    Kumar, T. K. Senthil
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 1175 - 1182
  • [25] MACHINE LEARNING PREDICTION MODEL FOR EARLY PREGNANCY DIAGNOSIS
    Barnhart, Kurt T.
    Bollig, Kassie Jean
    Senapati, Suneeta
    Robins, Jared
    Takacs, Peter
    Haisenleder, Daniel
    Speicher, David W.
    Koelper, Nathanael C.
    FERTILITY AND STERILITY, 2023, 120 (04) : E234 - E234
  • [26] Machine Learning based short term wind power prediction using a hybrid learning model
    Najeebullah
    Zameer, Aneela
    Khan, Asifullah
    Javed, Syed Gibran
    COMPUTERS & ELECTRICAL ENGINEERING, 2015, 45 : 122 - 133
  • [27] Development and Validation of a Machine Learning-Based Early Warning Model for Lichenoid Vulvar Disease: Prediction Model Development Study
    Meng, Jian
    Niu, Xiaoyu
    Luo, Can
    Chen, Yueyue
    Li, Qiao
    Wei, Dongmei
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [28] The Assessment of Early Warning for Insurance Company Using Machine Learning Methods
    Kocer, Gunay Burak
    Selcuk-kestel, A. Sevtap
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2025, 38 (01): : 492 - 504
  • [29] Using Machine Learning to Advance Early Warning Systems: Promise and Pitfalls
    Soland, James
    Domingue, Benjamin
    Lang, David
    TEACHERS COLLEGE RECORD, 2020, 122 (14):
  • [30] Using Machine Learning to Create an Early Warning System for Welfare Recipients
    Sansone, Dario
    Zhu, Anna
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2023, 85 (05) : 959 - 992