Research on Task Scheduling for Internet of Things Cloud Computing Based on Improved Chicken Swarm Optimization Algorithm

被引:0
|
作者
Liu S. [1 ]
Chen X. [1 ]
Cheng F. [2 ]
机构
[1] Zhejiang Industry Polytechnic College, Zhejiang, Shaoxing
[2] Southwest Jiaotong University, Sichuan, Chengdu
来源
Journal of ICT Standardization | 2024年 / 12卷 / 01期
关键词
chicken swarm optimization; Cloud computing; Internet of Things; task scheduling;
D O I
10.13052/jicts2245-800X.1212
中图分类号
学科分类号
摘要
Aiming at the shortcomings of long completion time and high consumption cost of cloud computing batch task scheduling in IoT, an Improved Chicken Swarm Optimization Algorithm (ICSO) for task scheduling in cloud computing scenarios is proposed. Specifically, in order to solve the problems of slow convergence and falling into local optimum of the chicken swarm optimization algorithm, we adopt the nonlinear decreasing technique of the rooster and the weighting technique of the hen, optimize the following coefficients of the chicks, and apply ICSO to cloud computing task scheduling. In simulation experiments, we conducted a large number of experiments using four standard benchmark functions with different number of tasks and the results show that ICSO algorithm reduces 25.8%, 9.3%, 8.8%, 7.5% in small task time compared to CSO, DCSO, GCSO, ABCSO in large task time by 30.8%, 8.3%, 7.8%, 6.3%, 11.8%, 10.3%, 8.8%, 7.5% savings in small task cost and 25.8%, 11.2%, 10.8%, 9.3% savings in large task cost. This method effectively reduces task scheduling time and cost consumption. Meanwhile, we tested it in combination with an IoT-based cloud platform and achieved very satisfying Results. © 2024 River Publishers.
引用
收藏
页码:21 / 46
页数:25
相关论文
共 50 条
  • [31] Task scheduling of cloud computing based on hybrid particle swarm algorithm and genetic algorithm
    Fu, Xueliang
    Sun, Yang
    Wang, Haifang
    Li, Honghui
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (05): : 2479 - 2488
  • [32] Cloud Task Scheduling Based on Chaotic Particle Swarm Optimization Algorithm
    Li Yingqiu
    Li Shuhua
    Gao Shoubo
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 493 - 496
  • [33] Hybrid swarm optimization algorithm based on task scheduling in a cloud environment
    Eldesokey, Heba M.
    Abd El-atty, Saied M.
    El-Shafai, Walid
    Amoon, Mohammed
    Abd El-Samie, Fathi E.
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2021, 34 (13)
  • [34] Task scheduling of cloud computing based on hybrid particle swarm algorithm and genetic algorithm
    Xueliang Fu
    Yang Sun
    Haifang Wang
    Honghui Li
    Cluster Computing, 2023, 26 : 2479 - 2488
  • [35] Job scheduling algorithm for cloud computing based on particle swarm optimization
    Liu, Jing
    Luo, Xingguo
    Zhang, Xingming
    Zhang, Fan
    NANOTECHNOLOGY AND PRECISION ENGINEERING, PTS 1 AND 2, 2013, 662 : 957 - 960
  • [36] Multi Objective Task Scheduling in Cloud Computing Using Cat Swarm Optimization Algorithm
    Mangalampalli, Sudheer
    Swain, Sangram Keshari
    Mangalampalli, Vamsi Krishna
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) : 1821 - 1830
  • [37] Prioritized Task-Scheduling Algorithm in Cloud Computing Using Cat Swarm Optimization
    Mangalampalli, Sudheer
    Swain, Sangram Keshari
    Chakrabarti, Tulika
    Chakrabarti, Prasun
    Karri, Ganesh Reddy
    Margala, Martin
    Unhelkar, Bhuvan
    Krishnan, Sivaneasan Bala
    SENSORS, 2023, 23 (13)
  • [38] Multi Objective Task Scheduling in Cloud Computing Using Cat Swarm Optimization Algorithm
    Sudheer Mangalampalli
    Sangram Keshari Swain
    Vamsi Krishna Mangalampalli
    Arabian Journal for Science and Engineering, 2022, 47 : 1821 - 1830
  • [39] Task Optimization Scheduling Algorithm in Embedded System Based on Internet of Things
    Wu Dianhong
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 2398 - 2402
  • [40] An improved Henry gas solubility optimization algorithm for task scheduling in cloud computing
    Mohamed Abd Elaziz
    Ibrahim Attiya
    Artificial Intelligence Review, 2021, 54 : 3599 - 3637