Machine and deep learning performance in out-of-distribution regressions

被引:0
|
作者
Shmuel, Assaf [1 ]
Glickman, Oren [1 ]
Lazebnik, Teddy [2 ]
机构
[1] Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
[2] Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom
来源
关键词
Compendex;
D O I
10.1088/2632-2153/ada221
中图分类号
学科分类号
摘要
Adversarial machine learning
引用
收藏
相关论文
共 50 条
  • [31] Out-Of-Distribution Detection In Unsupervised Continual Learning
    He, Jiangpeng
    Zhu, Fengqing
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3849 - 3854
  • [32] Out-of-distribution generalization for learning quantum dynamics
    Matthias C. Caro
    Hsin-Yuan Huang
    Nicholas Ezzell
    Joe Gibbs
    Andrew T. Sornborger
    Lukasz Cincio
    Patrick J. Coles
    Zoë Holmes
    Nature Communications, 14
  • [33] Learning Modular Structures That Generalize Out-of-Distribution
    Ashok, Arjun
    Devaguptapu, Chaitanya
    Balasubramanian, Vineeth N.
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 12905 - 12906
  • [34] Characterization of Out-of-distribution Samples from Uncertainty Maps Using Supervised Machine Learning
    Budde, Lina E.
    Bulatov, Dimitri
    Strauss, Eva
    Qiu, Kevin
    Iwaszczuk, Dorota
    PATTERN RECOGNITION, DAGM GCPR 2023, 2024, 14264 : 260 - 274
  • [35] Out-of-Distribution Detection in Deep Learning Models: A Feature Space-Based Approach
    Carvalho, Thiago Medeiros
    Vellasco, Marley
    Amaral, Jose Franco
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [36] The reliability of a deep learning model in clinical out-of-distribution MRI data: A multicohort study
    Martensson, Gustav
    Ferreira, Daniel
    Granberg, Tobias
    Cavallin, Lena
    Oppedal, Ketil
    Padovani, Alessandro
    Rektorova, Irena
    Bonanni, Laura
    Pardini, Matteo
    Kramberger, Milica G.
    Taylor, John-Paul
    Hort, Jakub
    Snaedal, Jon
    Kulisevsky, Jaime
    Blanc, Frederic
    Antonini, Angelo
    Mecocci, Patrizia
    Vellas, Bruno
    Tsolaki, Magda
    Kloszewska, Iwona
    Soininen, Hilkka
    Lovestone, Simon
    Simmons, Andrew
    Aarsland, Dag
    Westman, Eric
    MEDICAL IMAGE ANALYSIS, 2020, 66
  • [37] Deep Relevant Feature Focusing for Out-of-Distribution Generalization
    Wang, Fawu
    Zhang, Kang
    Liu, Zhengyu
    Yuan, Xia
    Zhao, Chunxia
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2022, 2022, 13534 : 245 - 253
  • [38] Deep-learning-based out-of-distribution data detection in visual inspection images
    Lindgren, Erik
    Zach, Christopher
    NDE 4.0, PREDICTIVE MAINTENANCE, COMMUNICATION, AND ENERGY SYSTEMS, 2023, 12489
  • [39] Deep Individual Active Learning: Safeguarding against Out-of-Distribution Challenges in Neural Networks
    Shayovitz, Shachar
    Bibas, Koby
    Feder, Meir
    ENTROPY, 2024, 26 (02)
  • [40] Wafer Map Classifier using Deep Learning for Detecting Out-of-Distribution Failure Patterns
    Kim, Yusung
    Cho, Donghee
    Lee, Jee-Hyong
    2020 IEEE INTERNATIONAL SYMPOSIUM ON THE PHYSICAL AND FAILURE ANALYSIS OF INTEGRATED CIRCUITS (IPFA), 2020,