Graph Autoencoder-Based Power Attacks Detection for Resilient Electrified Transportation Systems

被引:2
|
作者
Fahim, Shahriar Rahman [1 ]
Atat, Rachad [2 ]
Kececi, Cihat [1 ]
Takiddin, Abdulrahman [3 ]
Ismail, Muhammad [4 ]
Davis, Katherine R. [1 ]
Serpedin, Erchin [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ Qatar, Dept Elect & Comp Engn, Doha, Qatar
[3] Florida State Univ, Dept Elect & Comp Engn, FAMU FSU Coll Engn, Tallahassee, FL 32310 USA
[4] Tennessee Technol Univ, Dept Comp Sci, Cookeville, TN 38505 USA
关键词
Transportation; Mathematical models; Power systems; Detectors; Power grids; Power system stability; Power measurement; Cybersecurity; electric vehicles (EVs); false data injection attacks (FDIAs); graph autoencoder (GAE); graph neural networks (GNNs); smart grids; DATA INJECTION ATTACKS; STATE ESTIMATION; CLASSIFICATION; NETWORKS;
D O I
10.1109/TTE.2024.3355094
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The interdependence of power and electrified transportation systems introduces new challenges to the reliability and resilience of charging infrastructure. With the increasing prevalence of electric vehicles (EVs), power system attacks that can lower customers charging satisfaction rates are on the rise. The existing false data injection attack (FDIA) detection strategies are not suitable for protecting the power-dependent transportation infrastructure since: 1) these detectors are primarily optimized for power grids alone and 2) they overlook the impact of attacks on the quality-of-service of EVs and charging stations (CSs). In response to these challenges, this article aims to develop an FDIA detection strategy that takes advantage of the data correlations between power and transportation systems, ultimately enhancing the charging satisfaction rate. To achieve this goal, we propose a graph autoencoder-based FDIA detection scheme capable of extracting spatiotemporal features from both power and transportation data. The input features of power systems are active and reactive power, while those for transportation systems are the hourly traffic volume in CSs. The proposed model undergoes comprehensive training and testing on various types of FDIAs, showcasing improved generalization abilities. Simulations are conducted on the 2000-bus power grid of the state of Texas, featuring 360 active CSs. Our investigations reveal an average detection rate of 98.3%, representing a substantial improvement of 15%-25% compared to state-of-the-art detectors. This underscores the effectiveness of our proposed approach in addressing the unique challenges posed by power-dependent electrified transportation systems.
引用
收藏
页码:9539 / 9553
页数:15
相关论文
共 50 条
  • [41] A Stacked Autoencoder-Based miRNA Regulatory Module Detection Framework
    Yang, Yi
    Song, Yan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2019, 12 (02) : 822 - 832
  • [42] Development of deep autoencoder-based anomaly detection system for HANARO
    Ryu, Seunghyoung
    Jeon, Byoungil
    Seo, Hogeon
    Lee, Minwoo
    Shin, Jin-Won
    Yu, Yonggyun
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2023, 55 (02) : 475 - 483
  • [43] Autoencoder-based deep metric learning for network intrusion detection
    Andresini, Giuseppina
    Appice, Annalisa
    Malerba, Donato
    INFORMATION SCIENCES, 2021, 569 (569) : 706 - 727
  • [44] Autoencoder-based method for online fault detection in discrete-event class Production Systems
    Saddem, Ramla
    Bap, Dyln
    Teingua, Ange Patrick Wabo
    IFAC PAPERSONLINE, 2024, 58 (01): : 228 - 233
  • [45] A residual autoencoder-based transformer for fault detection of multivariate processes
    Shang, Jilin
    Yu, Jianbo
    APPLIED SOFT COMPUTING, 2024, 163
  • [46] DeepStream: Autoencoder-based stream temporal clustering and anomaly detection
    Harush, Shimon
    Meidan, Yair
    Shabtai, Asaf
    COMPUTERS & SECURITY, 2021, 106
  • [47] An LSTM Autoencoder-Based Framework for Satellite Telemetry Anomaly Detection
    Xu, Z. P.
    Cheng, Z. J.
    Guo, B.
    2022 4TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY ENGINEERING, SRSE, 2022, : 231 - 234
  • [48] Convolutional Autoencoder-Based Flaw Detection for Steel Wire Ropes
    Zhang, Guoyong
    Tang, Zhaohui
    Zhang, Jin
    Gui, Weihua
    SENSORS, 2020, 20 (22) : 1 - 12
  • [49] Rethinking Reconstruction Autoencoder-Based Out-of-Distribution Detection
    Zhou, Yibo
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7369 - 7377
  • [50] Autoencoder-Based Eggshell Crack Detection Using Acoustic Signal
    Yabanova, Ismail
    Balci, Zekeriya
    Yumurtaci, Mehmet
    Unler, Tarik
    JOURNAL OF FOOD PROCESS ENGINEERING, 2024, 47 (11)