Boosting Accuracy of Differentially Private Continuous Data Release for Federated Learning

被引:0
|
作者
Cai, Jianping [1 ,2 ,3 ]
Ye, Qingqing [2 ]
Hu, Haibo [2 ]
Liu, Ximeng [1 ]
Fu, Yanggeng [3 ]
机构
[1] City Univ Macau, Fac Data Sci, Macau, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[3] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; differential privacy; continuous data release; binary indexed tree; matrix mechanism; MECHANISM;
D O I
10.1109/TIFS.2024.3477325
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Incorporating differentially private continuous data release (DPCR) into private federated learning (FL) has recently emerged as a powerful technique for enhancing accuracy. Designing an effective DPCR model is the key to improving accuracy. Still, the state-of-the-art DPCR models hinder the potential for accuracy improvement due to insufficient privacy budget allocation and the design only for specific iteration numbers. To boost accuracy further, we develop an augmented BIT-based continuous data release (AuBCR) model, leading to demonstrable accuracy enhancements. By employing a dual-release strategy, AuBCR gains the potential to further improve accuracy, while confronting the challenge of consistent release and doubly-nested complex privacy budget allocation problem. Against this, we design an efficient optimal consistent estimation algorithm with only O(1) complexity per release. Subsequently, we introduce the (k, N)-AuBCR Model concept and design a meta-factor method. This innovation significantly reduces the optimization variables from O(T) to O (lg(2)T), thereby greatly enhancing the solvability of optimal privacy budget allocation and simultaneously supporting arbitrary iteration number T . Our experiments on classical datasets show that AuBCR boosts accuracy by 4.9% similar to 18.1% compared to traditional private FL and 0.4% similar to 1.2% compared to the state-of-the-art ABCRG model.
引用
收藏
页码:10287 / 10301
页数:15
相关论文
共 50 条
  • [31] Differentially Private Federated Learning With an Adaptive Noise Mechanism
    Xue, Rui
    Xue, Kaiping
    Zhu, Bin
    Luo, Xinyi
    Zhang, Tianwei
    Sun, Qibin
    Lu, Jun
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 74 - 87
  • [32] Concentrated Differentially Private Federated Learning With Performance Analysis
    Hu, Rui
    Guo, Yuanxiong
    Gong, Yanmin
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2021, 2 : 276 - 289
  • [33] Differentially private federated learning framework with adaptive clipping
    Wang F.
    Xie M.
    Li Q.
    Wang C.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (04): : 111 - 112
  • [34] Differentially Private Byzantine-Robust Federated Learning
    Ma, Xu
    Sun, Xiaoqian
    Wu, Yuduo
    Liu, Zheli
    Chen, Xiaofeng
    Dong, Changyu
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 3690 - 3701
  • [35] Differentially Private Federated Learning With Importance Client Sampling
    Chen, Lin
    Ding, Xiaofeng
    Li, Mengqi
    Jin, Hai
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3635 - 3649
  • [36] Local differentially private federated learning with homomorphic encryption
    Zhao, Jianzhe
    Huang, Chenxi
    Wang, Wenji
    Xie, Rulin
    Dong, Rongrong
    Matwin, Stan
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (17): : 19365 - 19395
  • [37] Clustering Federated Learning with Differentially Private Optimization on Transformer
    Zhi, Yajing
    PROCEEDINGS OF THE 2024 3RD INTERNATIONAL CONFERENCE ON NETWORKS, COMMUNICATIONS AND INFORMATION TECHNOLOGY, CNCIT 2024, 2024, : 93 - 97
  • [38] Utility-Aware Optimal Data Selection for Differentially Private Federated Learning in IoV
    Zhang, Jiancong
    Li, Shining
    Wang, Changhao
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (20): : 33326 - 33336
  • [39] On the impact of non-IID data on the performance and fairness of differentially private federated learning
    Amiri, Saba
    Belloum, Adam
    Nalisnick, Eric
    Klous, Sander
    Gommans, Leon
    52ND ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS WORKSHOP VOLUME (DSN-W 2022), 2022, : 52 - 58
  • [40] DP-FL: a novel differentially private federated learning framework for the unbalanced data
    Huang, Xixi
    Ding, Ye
    Jiang, Zoe L.
    Qi, Shuhan
    Wang, Xuan
    Liao, Qing
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2020, 23 (04): : 2529 - 2545