Due to the complexity of mild traumatic brain injury (mTBI) and the limitations of data measurement methods, it is often not feasible to directly determine the damage status of the brain based on the brain tissue damage threshold. The damage mechanism of brain tissue involves a variety of complex mechanical, biochemical, and physiological processes that vary significantly between individuals. In addition, existing measurement techniques still have limitations in temporal and spatial resolution, making it difficult to accurately capture the dynamic response of brain tissue. Therefore, establishing the relationship between head motion and brain tissue damage has become a key step in understanding the mechanical mechanism of mild traumatic brain injury. By studying the relationship between head motion and brain tissue damage, researchers can better understand the specific effects of different types of head motion (such as linear acceleration, rotational acceleration, rotational velocity) on brain tissue. This understanding not only helps reveal the basic mechanical mechanisms of mild traumatic brain injury, but also provides a scientific basis for the development of more effective protective equipment. For example, based on these findings, the design of protective helmets can be optimized to better disperse impact energy, reduce stress concentrations in brain tissue, and reduce the risk of trauma. However, there are still many challenges in assessing injury risk directly from kinematic measurements of the head. This article summarizes and reviews in detail the load characteristics related to mild traumatic brain injury and their corresponding brain tissue response, including the stress and strain effects of head kinematic parameters on brain tissue. In addition, this article also explores the head models used in studying brain injury mechanisms and their characteristics, such as high-precision finite element models and multi-scale models, which play an important role in simulating the deformation response of brain tissue. By comprehensively analyzing the relationship between head kinematic parameters and brain tissue deformation response, this article provides important reference and guidance for the prevention, assessment and treatment of mild traumatic brain injury. © 2024 Explosion and Shock Waves. All rights reserved.