Cahn-Hilliard system with proliferation term

被引:0
|
作者
Nimi, Aymard Christbert [1 ]
Langa, Franck Davhys Reval [1 ]
机构
[1] Univ Marien Ngouabi, Fac Sci & Tech, BP 69, Brazzaville, Rep Congo
关键词
Cahn-Hilliard system; proliferation term; dissipativity; blow up; simulations; PHASE-FIELD MODEL; EQUATION;
D O I
10.3233/ASY-241915
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, our objective is to explore a Cahn-Hilliard system with a proliferation term, particularly relevant in biological contexts, with Neumann boundary conditions. We commence our investigation by establishing the boundedness of the average values of the local cell density u and the temperature H . This observation suggests that the solution (u, H) either persists globally in time or experiences finite-time blow-up. Subsequently, we prove the convergence of u to 1 and H to 0 as time approaches infinity. Finally, we bolster our theoretical findings with numerical simulations.
引用
收藏
页码:123 / 145
页数:23
相关论文
共 50 条
  • [31] ON THE COUPLED CAHN-HILLIARD EQUATIONS
    SHEN, WX
    ZHENG, SM
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (3-4) : 701 - 727
  • [32] A CAHN-HILLIARD MODEL WITH A PROLIFERATION TERM FOR THE PROLIFERATIVE-TO-INVASIVE TRANSITION OF HYPOXIC GLIOMA CELLS
    Li, Lu
    Cherfils, Laurence
    Miranville, Alain
    Guillevin, Remy
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (06) : 1509 - 1532
  • [33] ON THE STOCHASTIC CAHN-HILLIARD EQUATION
    ELEZOVIC, N
    MIKELIC, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (12) : 1169 - 1200
  • [34] The convective Cahn-Hilliard equation
    Eden, A.
    Kalantarov, V. K.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (04) : 455 - 461
  • [35] On Cahn-Hilliard systems with elasticity
    Garcke, H
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 : 307 - 331
  • [36] ON THE STEADY STATE BIFURCATION OF THE CAHN-HILLIARD/ALLEN-CAHN SYSTEM
    Li, Shixing
    Yan, Dongming
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (07): : 3077 - 3088
  • [37] Finite element approximation of an Allen-Cahn/Cahn-Hilliard system
    Barrett, JW
    Blowey, JF
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (01) : 11 - 71
  • [38] ON CAHN-HILLIARD TYPE EQUATIONS
    NOVICKCOHEN, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (09) : 797 - 814
  • [39] Nonhomogeneous Cahn-Hilliard fluids
    Boyer, F
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (02): : 225 - 259
  • [40] Numerical methods for a system of coupled Cahn-Hilliard equations
    Martini, Mattia
    Sodini, Giacomo E.
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2021, 12 (01) : 1 - 12