Based on TEST toxicity prediction and machine learning to forecast toxicity dynamics in the photocatalytic degradation of tetracycline

被引:3
|
作者
Liu, Kaihang [1 ]
Ni, Wenhui [1 ]
Zhang, Qiaoyu [1 ]
Huang, Xu [3 ]
Luo, Tao [2 ,3 ,4 ]
Huang, Jian [2 ,3 ,4 ]
Zhang, Hua [2 ,3 ,4 ]
Zhang, Yong [2 ,3 ,4 ]
Peng, Fumin [1 ]
机构
[1] Anhui Univ, Sch Chem & Chem Engn, Hefei 230039, Anhui, Peoples R China
[2] Anhui Jianzhu Univ, Anhui Inst Ecol Civilizat, Hefei 230601, Anhui, Peoples R China
[3] Anhui Jianzhu Univ, Anhui Prov Key Lab Environm Pollut Control & Resou, Hefei 230601, Anhui, Peoples R China
[4] Anhui Jianzhu Univ, Pollut Control & Resource Utilizat Ind Pk Joint La, Hefei 230601, Anhui, Peoples R China
关键词
Biological treatment - Full-spectrum - Machine-learning - Nano scale - Photocatalytic degradation - Photocatalytic process - Precise monitoring - Spectrum irradiation - TiO 2 - Toxicity predictions;
D O I
10.1039/d4cp04037f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The integration of photocatalysis and biological treatment provides an effective strategy for controlling antibiotic contamination, which requires precise monitoring of toxicity changes during the photocatalytic process. In this study, nanoscale TiO2 (P25) was employed to degrade tetracycline (TC) under full-spectrum irradiation, with O2 identified as a crucial reactant for the generation reactive oxygen species (ROS). The toxicity simulation results of the degradation intermediates were closely correlated with the predictions of T.E.S.T software. By analyzing the content of intermediates under different experimental conditions, we developed a machine learning model utilizing the random forest algorithm with a correlation coefficient of R2 = 0.878 and a mean absolute error of MAE = 0.02. The model can track the changes of photocatalytic intermediates, in combination with toxicity simulation, which facilitates the prediction of toxicity at different degradation stages, thus allowing selection of the optimal timing of biological treatment interventions.
引用
收藏
页码:28266 / 28273
页数:8
相关论文
共 50 条
  • [31] Machine learning based forecast for the prediction of inpatient bed demand
    Tello, Manuel
    Reich, Eric S.
    Puckey, Jason
    Maff, Rebecca
    Garcia-Arce, Andres
    Bhattacharya, Biplab Sudhin
    Feijoo, Felipe
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [32] A New Hybrid Machine Learning Approach for Prediction of Phenanthrene Toxicity on Mice
    Xu, Yueting
    Yu, Keting
    Wang, Pengjun
    Chen, Huiling
    Zhao, Xuehua
    Zhu, Jiayin
    IEEE ACCESS, 2019, 7 : 138461 - 138472
  • [33] Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity
    Hemmerich, Jennifer
    Troger, Florentina
    Fuezi, Barbara
    Ecker, Gerhard F.
    MOLECULAR INFORMATICS, 2020, 39 (05)
  • [34] Machine learning prediction of financial toxicity in patients with resected lung cancer
    Deboever, Nathaniel
    Al-Tashi, Qasem
    Eisenberg, Michael
    Hofstetter, Wayne
    Mehran, Reza
    Rice, David
    Roth, Jack
    Sepesi, Boris
    Swisher, Stephen
    Vaporciyan, Ara
    Walsh, Garrett
    Antonoff, Mara
    Wu, Jia
    Rajaram, Ravi
    CANCER RESEARCH, 2023, 83 (07)
  • [35] PREDICTION OF RESPIRATORY TOXICITY USING CHEMICAL INFORMATION AND MACHINE LEARNING TECHNIQUES
    Ghosh, Dipayan
    Koneti, Geervani
    Ramamurthi, Narayanan
    DRUG METABOLISM AND PHARMACOKINETICS, 2019, 34 (01) : S34 - S34
  • [36] Leveraging ChemBERTa and machine learning for accurate toxicity prediction of ionic liquids
    Sadaghiyanfam, Safa
    Kamberaj, Hiqmet
    Isler, Yalcin
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2025, 171
  • [37] MolToxPred: small molecule toxicity prediction using machine learning approach
    Setiya, Anjali
    Jani, Vinod
    Sonavane, Uddhavesh
    Joshi, Rajendra
    RSC ADVANCES, 2024, 14 (06) : 4201 - 4220
  • [38] Machine learning model for random forest acute oral toxicity prediction
    Elsayad, A. M.
    Elsayad, K. A.
    Zeghid, M.
    Khan, A. N.
    Baareh, A. K. M.
    Sadiq, A.
    Mukhtar, S. A.
    Ali, H. F.
    Abd El-kade, S.
    GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM, 2025, 11 (01): : 21 - 38
  • [39] Machine Learning-Based Prediction of Digoxin Toxicity in Heart Failure: A Multicenter Retrospective Study
    Asai, Yuki
    Tashiro, Takumi
    Kondo, Yoshihiro
    Hayashi, Makoto
    Arihara, Hiroki
    Omote, Saki
    Tanio, Ena
    Yamashita, Saena
    Higuchi, Takashi
    Hashimoto, Ei
    Yamada, Momoko
    Tsuji, Hinako
    Hayakawa, Yuji
    Suzuki, Ryohei
    Muro, Hiroya
    Yamamoto, Yoshiaki
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2023, 46 (04) : 614 - 620
  • [40] Deep Learning-Based Conformal Prediction of Toxicity
    Zhang, Jin
    Norinder, Ulf
    Svensson, Fredrik
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) : 2648 - 2657