Inactivation of Aspergillus Species and Degradation of Aflatoxins in Water Using Photocatalysis and Titanium Dioxide

被引:0
|
作者
Quintanilla-Villanueva, Gabriela Elizabeth [1 ]
Luna-Moreno, Donato [1 ]
Núñez-Salas, Raisa Estefanía [2 ,3 ]
Rodríguez-Delgado, Melissa Marlene [4 ,5 ]
Villarreal-Chiu, Juan Francisco [4 ,5 ]
机构
[1] Centro de Investigaciones en Óptica AC, Division de Fotónica, Col. Lomas del Campestre, Loma del Bosque 115, Guanajuato, León,37150, Mexico
[2] Universidad Politécnica de Apodaca (UPAPNL), Av. Politécnica No. 2331, Col. El Barretal, Apodaca 66600, Nuevo Leon, Mexico
[3] Instituto Tecnológico de Nuevo León-TecNM, Centro de Investigación e Innovación Tecnológica, Nuevo Leon, Apodaca,66629, Mexico
[4] Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo Leon, Mexico
[5] Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Nuevo Leo
关键词
Aflatoxins - Aspartame - Aspergillus - Metabolites - Mycotoxins - Photocatalytic activity - Photodegradation;
D O I
10.3390/pr12122673
中图分类号
学科分类号
摘要
Aflatoxins (AF) are highly toxic secondary metabolites produced by various species of Aspergillus, posing significant health risks to humans and animals. The four most prominent types are aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2). These mycotoxins are prevalent in various environments, including water sources and food products. Among these mycotoxins, AFB1 is recognized as the most toxic, mutagenic, and carcinogenic to humans. Consequently, most efforts to mitigate the impact of AF have been focused on AFB1, with photocatalysis emerging as a promising solution. Recent research has demonstrated that using semiconductor photocatalysis, particularly titanium dioxide (TiO2), combined with UV–visible irradiation significantly enhances the efficiency of AF degradation. TiO2 is noted for its high activity under UV irradiation, non-toxicity, and excellent long-term stability, making it a favorable choice for photocatalytic applications. Furthermore, TiO2 combined with visible light has demonstrated the ability to reduce AF contamination in food products. This article summarizes the working conditions and degradation rates achieved, as well as the advantages, limitations, and areas of opportunity of these methodologies for the degradation of AF and preventing their production, thereby enhancing food and water safety. © 2024 by the authors.
引用
收藏
相关论文
共 50 条
  • [21] Investigation of the Synergistic Effect of Sonolysis and Photocatalysis of Titanium Dioxide for Organic Dye Degradation
    Choi, Yunseok
    Lee, Daein
    Hong, Sungje
    Khan, Sovann
    Darya, Burak
    Lee, Jae-Young
    Chung, Jaewon
    Cho, So-Hye
    CATALYSTS, 2020, 10 (05)
  • [22] Respective advantages of titanium dioxide photocatalysis and ultrasound to treat water.
    Pichat, P
    Theron, P
    Guillard, C
    Petrier, C
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U700 - U700
  • [23] Inactivation of Aspergillus species in real water matrices using medium pressure mercury lamps
    Oliveira, B. R.
    Marques, A. P.
    Ressurreicao, M.
    Moreira, C. J. S.
    Pereira, C. S.
    Crespo, M. T. B.
    Pereira, V. J.
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2021, 221
  • [24] Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide
    Kaneco, S
    Rahman, MA
    Suzuki, T
    Katsumata, H
    Ohta, K
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 163 (03) : 419 - 424
  • [25] Study on photocatalytic degradation of organic pollutants in water by using nanometer titanium dioxide
    Huang, Y.
    Ju, X.
    Huagong Xiandai/Modern Chemical Industry, 2001, 21 (04): : 45 - 48
  • [26] Photocatalytic Degradation of Oil-emulsion in Water/Seawater Using Titanium Dioxide
    Emam, E. A.
    Aboul-Gheit, N. A. K.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2014, 36 (10) : 1123 - 1133
  • [27] Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water
    Xu, JC
    Lu, M
    Guo, XY
    Li, HL
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2005, 226 (01) : 123 - 127
  • [28] INACTIVATION OF PHAGE MS2 BY IRON-AIDED TITANIUM-DIOXIDE PHOTOCATALYSIS
    SJOGREN, JC
    SIERKA, RA
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (01) : 344 - 347
  • [29] Solar photo-inactivation of phytopathogens by trace level hydrogen peroxide and titanium dioxide photocatalysis
    L. Muszkat
    L. Feigelson
    L. Bir
    K. A. Muszkat
    M. Teitel
    I. Dornay
    B. Kirchner
    G. Kirtzman
    Phytoparasitica, 2005, 33 : 267 - 274
  • [30] Degradation of pharmaceutical antibiotic (ciprofloxacin) by photocatalysis process using sol-gel based titanium dioxide nanoparticles
    Parmar, Nitesh
    Srivastava, Jitendra Kumar
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2021, 19 (09) : 929 - 938