Brillouin light scattering spectral fingerprinting of magnetic microstates in artificial spin ice

被引:0
|
作者
Mondal, Amrit Kumar [1 ,2 ]
Chaurasiya, Avinash Kumar [1 ]
Stenning, Kilian D. [3 ]
Vanstone, Alex [3 ]
Gartside, Jack C. [3 ]
Branford, Will R. [3 ]
Barman, Anjan [1 ,2 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Dept Condensed Matter & Mat Phys, Block JD,Sect 3, Kolkata 700106, India
[2] SN Bose Natl Ctr Basic Sci, Tech Res Ctr, Block JD,Sect 3, Kolkata 700106, India
[3] Imperial Coll London, Dept Phys, Blackett Lab, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Magnetic microstate in artificial spin ice; Gigahertz spin dynamics; Spectral fingerprinting; Functional magnonics; Brillouin light scattering; FRUSTRATION;
D O I
10.1016/j.nantod.2024.102497
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The family of nanomagnetic arrays termed artificial spin ice (ASI) possess a vast range of metastable microstates. These states exhibit both exotic fundamental physics and more recently applied functionality, garnering attention as reconfigurable magnonic circuits and neuromorphic computing platforms. However, open questions remain on the role of microstate imperfections or angular disorder - particularly in the GHz response of the system. We report a study on the GHz dynamics of a series of five carefully prepared microstates in the same ASI sample, with both coexistence of vortex and uniformly magnetized macrospins, and disorder in the orientation of the macrospins at different vertices. We observe microstate-specific mode frequency shifting, mode creation and mode crossing. This versatility of characteristic spin-wave (SW) peaks for specific magnetic microstates in ASI enables identification of microstate configurations via SW spectral characterization. The wide reconfigurability of microstate-specific SW dynamics also opens avenues for developing rich magnonic devices operating in the GHz frequency regime and advances the understanding of ASI physics.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Crystallites of magnetic charges in artificial spin ice
    Zhang, Sheng
    Gilbert, Ian
    Nisoli, Cristiano
    Chern, Gia-Wei
    Erickson, Michael J.
    O'Brien, Liam
    Leighton, Chris
    Lammert, Paul E.
    Crespi, Vincent H.
    Schiffer, Peter
    NATURE, 2013, 500 (7464) : 553 - 557
  • [22] Brillouin Light Scattering by Magnetic Quasivortices in Cavity Optomagnonics
    Osada, A.
    Gloppe, A.
    Hisatomi, R.
    Noguchi, A.
    Yamazaki, R.
    Nomura, M.
    Nakamura, Y.
    Usami, K.
    PHYSICAL REVIEW LETTERS, 2018, 120 (13)
  • [23] Brillouin light scattering from layered magnetic structures
    Hillebrands, B
    LIGHT SCATTERING IN SOLIDS VII: CRYSTAL-FIELD AND MAGNETIC EXCITATIONS, 2000, 75 : 174 - 289
  • [24] Light scattering by hexagonal ice crystal in the Wentzel–Kramers–Brillouin approximation
    M. Ibn Chaikh
    R. Lamsoudi
    A. Belafhal
    Optical and Quantum Electronics, 2016, 48
  • [25] Brillouin light scattering of spin waves inaccessible with free-space light
    Freeman, Ryan
    Lemasters, Robert
    Kalejaiye, Tomi
    Wang, Feng
    Chen, Guanxiong
    Ding, Jinjun
    Wu, Mingzhong
    Demidov, Vladislav E.
    Demokritov, Sergej O.
    Harutyunyan, Hayk
    Urazhdin, Sergei
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [26] Direct Brillouin light scattering observation of dark spin-wave envelope solitons in magnetic films
    Ordonez-Romero, Cesar L.
    Cherkasskii, Mikhail A.
    Qureshi, Naser
    Kalinikos, Boris A.
    Patton, Carl E.
    PHYSICAL REVIEW B, 2013, 87 (17):
  • [27] Application of Microfocused Brillouin Light Scattering to the Study of Spin Waves in Low-Dimensional Magnetic Systems
    Madami, Marco
    Gubbiotti, Gianluca
    Tacchi, Silvia
    Carlotti, Giovanni
    SOLID STATE PHYSICS, VOL 63, 2012, 63 : 79 - 150
  • [28] Magnon Modes of Microstates and Microwave-Induced Avalanche in Kagome Artificial Spin Ice with Topological Defects
    Bhat, V. S.
    Watanabe, S.
    Baumgaertl, K.
    Kleibert, A.
    Schoen, M. A. W.
    Vaz, C. A. F.
    Grundler, D.
    PHYSICAL REVIEW LETTERS, 2020, 125 (11)
  • [29] Nonstochastic magnetic reversal in artificial quasicrystalline spin ice
    Farmer, B.
    Bhat, V. S.
    Sklenar, J.
    Woods, J.
    Teipel, E.
    Smith, N.
    Ketterson, J. B.
    Hastings, J. T.
    De Long, L. E.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
  • [30] Magnetic Tunability of Permalloy Artificial Spin Ice Structures
    Talapatra, A.
    Singh, N.
    Adeyeye, A. O.
    PHYSICAL REVIEW APPLIED, 2020, 13 (01):