Promising hydrogen storage performance of alkali metal (Li, Na, K) decorated arsenene: A DFT study

被引:0
|
作者
Nabi, Ghulam [1 ,2 ]
Razzaq, Zubia [1 ]
Shakil, Muhammad [3 ]
Rehman, Abdul [1 ]
Nadeem, Ahmed [4 ]
Ahmad, Khuram Shahzad [5 ]
Maraj, Mudassar [1 ]
机构
[1] Univ Gujrat, Dept Phys, Nanotechnol Lab, Gujrat 50700, Pakistan
[2] Tech Univ Ilmenau, Inst Phys, D-98693 Ilmenau, Germany
[3] Islamia Univ Bahawalpur, Inst Phys, Bahawalpur 63100, Pakistan
[4] King Saud Univ, Coll Pharm, Dept Pharmacol & Toxicol, Riyadh 11451, Saudi Arabia
[5] Fatima Jinnah Woman Univ Rawalpindi, Environm Sci Dept, Rawalpindi, Pakistan
关键词
Hydrogen storage; Solid-state method; Metal decoration; Adsorption energy; Gravimetric capacity; CARBON; ADSORPTION; SILICENE;
D O I
10.1016/j.mseb.2024.117742
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Owing to high industrial demand, H2 2 stocking display of alkali metals (AMs) including Li, Na, and K decorated arsenene is investigated utilizing DFT. The structure integrity for Li, Na, and K decorated arsenene is confirmed through geometry optimization and phonon dispersions. The firm bindings confirmations are noted for Li, Na and K above arsenene with binding energy values i.e.-2.607 eV,-2.263 eV and-1.993 eV respectively depicting Li as most stable with maximum hydrogen adsorption. A single Li atom decoration can adsorb three H2 2 molecules with average value of adsorption energy-0.125 eV per H2. 2 . While in the case of multiple Li atom adsorption, each Li atom is competent to physically capture two H2 2 with mean adsorption energy-0.131 electron volt per H2 2 with the reversible gravimetric capacity of 3.85 %. The present endeavor intends to provide insight into potential hydrogen storage materials in the future.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Hydrogen Storage in Sc and Li Decorated Metal-Inorganic Framework
    Kumar, Sandeep
    Samolia, Madhu
    Kumar, Thogluva Janardhanan Dhilip
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (03): : 1328 - 1336
  • [42] Li-decorated BC3 nanopores: Promising materials for hydrogen storage
    Cabria, I.
    Lebon, A.
    Torres, M. B.
    Gallego, L. J.
    Vega, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 57 : 26 - 38
  • [43] A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene
    Sheng, Zhe
    Wu, Shujing
    Dai, Xianying
    Zhao, Tianlong
    Hao, Yue
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (20) : 13903 - 13908
  • [44] Li-decorated porous hydrogen substituted graphyne: A new member of promising hydrogen storage medium
    Zhang, Yanan
    Zhang, Lei
    Pan, Hongzhe
    Wang, Haifeng
    Li, Qingfang
    APPLIED SURFACE SCIENCE, 2021, 535
  • [45] REACTION OF ALKALI METAL MOLYBDATES (LI, NA, K) WITH INDIUM MOLYBDATE
    VELIKODN.YA
    TRUNOV, VK
    MARKELOV.NI
    ZHURNAL NEORGANICHESKOI KHIMII, 1970, 15 (11): : 3046 - &
  • [46] Li-decorated B2O as potential candidates for hydrogen storage: A DFT simulations study
    Gao, Feng
    Wei, Yuhua
    Du, Jiguang
    Jiang, Gang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (67) : 33486 - 33495
  • [47] Reversible hydrogen storage tendency of light-metal (Li/Na/K) decorated carbon nitride (C9N4) monolayer
    Kaur, Surinder Pal
    Hussain, Tanveer
    Kaewmaraya, Thanayut
    Kumar, T. J. Dhilip
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (67) : 26301 - 26313
  • [48] A DFT study of monolayer magnesium carbide (MgC2) as a potential anode for (Li, Na, K) alkali metal-ion batteries
    Akbar, Muhammad
    Ain, Noor ul
    Khan, Muhammad Isa
    Alotaibi, Rajeh
    Ali, Syed Mansoor
    Ashraf, Naveed
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (13) : 6570 - 6582
  • [49] Study on the First-Principles Calculations of Graphite Intercalated by Alkali Metal (Li, Na, K)
    Wan, Wei
    Wang, Haidong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (04): : 3177 - 3184
  • [50] Hydrogen storage on lithium decorated zeolite templated carbon, DFT study
    Isidro-Ortega, Frank J.
    Pacheco-Sanchez, Juan H.
    Desales-Guzman, Luis A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (52) : 30704 - 30717