A 44.3 TOPS/W SRAM Compute-in-Memory With Near-CIM Analog Memory and Activation for DAC/ADC-Less Operations

被引:1
|
作者
Chen, Peiyu [1 ]
Wu, Meng [1 ]
Zhao, Wentao [1 ]
Ma, Yufei [1 ]
Jia, Tianyu [1 ]
Ye, Le [1 ]
机构
[1] Peking Univ, Sch Integrated Circuits, Beijing 100871, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
In-memory computing; Analog memory; Computer architecture; Common Information Model (computing); Solid state circuits; Capacitors; Random access memory; analog nonlinearity activation; compute-in-memory (CIM); DAC/ADC-less; SRAM;
D O I
10.1109/LSSC.2024.3418099
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we present an analog compute-in-memory (CIM) macro design which incorporates near-CIM analog memory and nonlinearity activation unit (NAU) to alleviate the DAC/ADC power bottleneck. Fully differential analog memory is designed with switched capacitor storage circuits. Activation function, e.g., rectified linear unit, is also performed in analog domain in NAU. The CIM macro is fabricated using TSMC 55-nm technology, with a peak macro-level efficiency of 44.3 TOPS/W and a system energy efficiency of 27.7 TOPS/W for analog input and output with 4-bit weight. The near-CIM analog memory and NAU solution brings 76.0% energy reduction compared with DAC/ADC solution, which contributes 1.34x to 2.37x energy efficiency improvement.
引用
收藏
页码:299 / 302
页数:4
相关论文
共 25 条
  • [21] IMPACT: A 1-to-4b 813-TOPS/W 22-nm FD-SOI Compute-in-Memory CNN Accelerator Featuring a 4.2-POPS/W 146-TOPS/mm2 CIM-SRAM With Multi-Bit Analog Batch-Normalization
    Kneip, Adrian
    Lefebvre, Martin
    Verecken, Julien
    Bol, David
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2023, 58 (07) : 1871 - 1884
  • [22] A 28nm 157TOPS/W 446.9Kb/mm2 Compute-In-Memory SRAM Macro with Analog-Digital Hybrid Computing for Deep Neural Network Inference
    Jeong, Sangsu
    Oh, Juyoung
    Jeon, Dongsuk
    2024 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE, CICC, 2024,
  • [23] TA-Quatro: Soft Error-Resilient and Power-Efficient SRAM Cell for ADC-Less Binary Weight and Ternary Activation In-Memory Computing
    Nguyen, Thanh-Dat
    Le, Minh-Son
    Pham, Thi-Nhan
    Chang, Ik-Joon
    ELECTRONICS, 2024, 13 (15)
  • [24] A 28nm 314.6TLFOPS/W Reconfigurable Floating-Point Analog Compute-In-Memory Macro with Exponent Approximation and Two-Stage Sharing TD-ADC
    He, Pengyu
    Zhao, Yuanzhe
    Xie, Heng
    Wang, Yang
    Yin, Shouyi
    Li, Li
    Zhu, Yan
    Martins, R. P.
    Chan, Chi-Hang
    Zhang, Minglei
    2024 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE, CICC, 2024,
  • [25] D6CIM: 60.4-TOPS/W, 1.46-TOPS/mm2, 1005-Kb/mm2 Digital 6T-SRAM- Based Compute-in-Memory Macro Supporting 1-to-8b Fixed-Point Arithmetic in 28-nm CMOS
    Oh, Jonghyun
    Lin, Chuan-Tung
    Seok, Mingoo
    IEEE 49TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE, ESSCIRC 2023, 2023, : 413 - 416