Kernel approximation using analogue in-memory computing

被引:0
|
作者
Buechel, Julian [1 ]
Camposampiero, Giacomo [1 ]
Vasilopoulos, Athanasios [1 ]
Lammie, Corey [1 ]
Le Gallo, Manuel [1 ]
Rahimi, Abbas [1 ]
Sebastian, Abu [1 ]
机构
[1] IBM Res Europe, Ruschlikon, Switzerland
关键词
EFFICIENT; PERFORMANCE; MEMRISTOR;
D O I
10.1038/s42256-024-00943-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel functions are vital ingredients of several machine learning (ML) algorithms but often incur substantial memory and computational costs. We introduce an approach to kernel approximation in ML algorithms suitable for mixed-signal analogue in-memory computing (AIMC) architectures. Analogue in-memory kernel approximation addresses the performance bottlenecks of conventional kernel-based methods by executing most operations in approximate kernel methods directly in memory. The IBM HERMES project chip, a state-of-the-art phase-change memory-based AIMC chip, is utilized for the hardware demonstration of kernel approximation. Experimental results show that our method maintains high accuracy, with less than a 1% drop in kernel-based ridge classification benchmarks and within 1% accuracy on the long-range arena benchmark for kernelized attention in transformer neural networks. Compared to traditional digital accelerators, our approach is estimated to deliver superior energy efficiency and lower power consumption. These findings highlight the potential of heterogeneous AIMC architectures to enhance the efficiency and scalability of ML applications.
引用
收藏
页码:1605 / 1615
页数:14
相关论文
共 50 条
  • [21] Multidimensional Euclidean Distance Calculation using In-Memory Computing
    Mandavi, Mojtaba
    2024 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS, CITS 2024, 2024, : 195 - 202
  • [22] Visual Reasoning Indexing and Retrieval Using In-Memory Computing
    Cao, Hongfei
    Li, Yu
    Allen, Carla M.
    Phinney, Michael A.
    Shyu, Chi-Ren
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2016, 10 (03) : 299 - 322
  • [23] Configuring in-memory cluster computing using random forest
    Bei, Zhendong
    Yu, Zhibin
    Luo, Ni
    Jiang, Chuntao
    Xu, Chengzhong
    Feng, Shengzhong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 79 : 1 - 15
  • [24] Visual Reasoning Indexing and Retrieval Using In-Memory Computing
    Cao, Hongfei
    Li, Yu
    Allen, Carla M.
    Phinney, Michael A.
    Shyu, Chi-Ren
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 17 - 24
  • [25] Benchmarking In-Memory Computing Architectures
    Shanbhag, Naresh R.
    Roy, Saion K.
    IEEE OPEN JOURNAL OF THE SOLID-STATE CIRCUITS SOCIETY, 2022, 2 : 288 - 300
  • [26] Approximate Memristive In-memory Computing
    Yantir, Hasan Erdem
    Eltawil, Ahmed M.
    Kurdahi, Fadi J.
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2017, 16
  • [27] Parallel in-memory wireless computing
    Wang, Cong
    Ruan, Gong-Jie
    Yang, Zai-Zheng
    Yangdong, Xing-Jian
    Li, Yixiang
    Wu, Liang
    Ge, Yingmeng
    Zhao, Yichen
    Pan, Chen
    Wei, Wei
    Wang, Li-Bo
    Cheng, Bin
    Zhang, Zaichen
    Zhang, Chuan
    Liang, Shi-Jun
    Miao, Feng
    NATURE ELECTRONICS, 2023, 6 (05) : 381 - 389
  • [28] Automated Synthesis for In-Memory Computing
    Rashed, Muhammad Rashedul Haq
    Thijssen, Sven
    Jha, Sumit Kumar
    Ewetz, Rickard
    2023 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2023,
  • [29] In-memory computing on a photonic platform
    Rios, Carlos
    Youngblood, Nathan
    Cheng, Zengguang
    Le Gallo, Manuel
    Pernice, Wolfram H. P.
    Wright, C. David
    Sebastian, Abu
    Bhaskaran, Harish
    SCIENCE ADVANCES, 2019, 5 (02):
  • [30] Parallel in-memory wireless computing
    Cong Wang
    Gong-Jie Ruan
    Zai-Zheng Yang
    Xing-Jian Yangdong
    Yixiang Li
    Liang Wu
    Yingmeng Ge
    Yichen Zhao
    Chen Pan
    Wei Wei
    Li-Bo Wang
    Bin Cheng
    Zaichen Zhang
    Chuan Zhang
    Shi-Jun Liang
    Feng Miao
    Nature Electronics, 2023, 6 : 381 - 389