Pythagorean Neutrosophic Triplet Groups

被引:0
|
作者
Khan M. [1 ]
Zeeshan M. [2 ]
Anis S. [1 ]
Smrandache F. [3 ]
机构
[1] Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus
[2] Department of Mathematics, COMSATS University Islamabad, Islamabad Campus
[3] Department of Mathematics and Sciences, University of New Mexico, 705 Gurley Ave., Gallup, 87301, NM
关键词
Neutrosophic triplet; Neutrosophic triplet group; Pythagorean neutrosophic triplet; Pythagorean neutrosophic triplet group;
D O I
10.5281/zenodo.11206321
中图分类号
学科分类号
摘要
It is a well-known fact that groups are the only algebraic structures having a single binary operation that is mathematically so perfect that it is impossible to introduce a richer structure within it. The main purpose of this study is to introduce the notion of the Pythagorean neutrosophic triplet (PNT) which is the generalization of neutrosophic triplet (NT). The PNT is an algebraic structure of three ordered pairs that satisfy several properties under the binary operation (B-Operation) “*”. Furthermore, we used the PNTs to introduce the novel concept of a Pythagorean neutrosophic triplet group (PNTG). The algebraic structure (AS) of PNTG is different from the neutrosophic triplet group (NTG). We discussed some properties, related results, and particular examples of these novel concepts. We further studied Pythagorean neutro-homomorphism, Pythagorean neutro-isomorphism, etc., for PNTGs. Moreover, we discussed the main distinctions between the neutrosophic triplet group (NTG) and the PNTG. © (2024), (Neutrosophic Sets and Systems). All rights reserved.
引用
下载
收藏
页码:261 / 276
页数:15
相关论文
共 50 条
  • [41] On Neutrosophic Quadruple Groups
    Smarandache, F.
    Rezaei, A.
    Agboola, A. A. A.
    Jun, Y. B.
    Borzooei, R. A.
    Davvaz, B.
    Saeid, Arsham Borumand
    Akram, M.
    Hamidi, M.
    Mirvakili, S.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01)
  • [42] On Neutrosophic Quadruple Groups
    F. Smarandache
    A. Rezaei
    A. A. A. Agboola
    Y. B. Jun
    R. A. Borzooei
    B. Davvaz
    Arsham Borumand Saeid
    M. Akram
    M. Hamidi
    S. Mirvakili
    International Journal of Computational Intelligence Systems, 14
  • [43] Solving of assignment problem by Pythagorean octagonal neutrosophic fuzzy number
    R. Narmada Devi
    S. Sowmiya
    Yamini Parthiban
    International Journal of Information Technology, 2025, 17 (2) : 1079 - 1085
  • [44] Pythagorean m-polar Fuzzy Neutrosophic Metric Spaces
    Siraj A.
    Naeem K.
    Said B.
    Neutrosophic Sets and Systems, 2023, 53 : 562 - 579
  • [45] Pythagorean m-polar Fuzzy Neutrosophic Topology with Applications
    Siraj, Atiqa
    Fatima, Tehreem
    Afzal, Deeba
    Naeem, Khalid
    Karaaslan, Faruk
    Neutrosophic Sets and Systems, 2022, 48 : 251 - 290
  • [46] Pythagorean Neutrosophic Planar Graphs with an Application in Decision-Making
    Chellamani, P.
    Ajay, D.
    Al-Shamiri, Mohammed M.
    Ismail, Rashad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5158 - 5158
  • [47] On neutrosophic extended triplet groups (loops) and Abel-Grassmann's groupoids (AG-groupoids)
    Zhang, Xiaohong
    Wu, Xiaoying
    Mao, Xiaoyan
    Smarandache, Florentin
    Park, Choonkil
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (04) : 5743 - 5753
  • [48] Neutrosophic Triplet Partial g - Metric Spaces
    Şahin, Memet
    Kargın, Abdullah
    Yücel, Murat
    Neutrosophic Sets and Systems, 2020, 33 : 116 - 134
  • [49] Neutrosophic Triplet Partial Bipolar Metric Spaces
    Sahin, Memet
    Kargin, Abdullah
    Uz, Merve Sena
    NEUTROSOPHIC SETS AND SYSTEMS, 2020, 33 : 297 - 313
  • [50] Some Results on Neutrosophic Triplet Group and Their Applications
    Jaiyeola, Temitope Gbolahan
    Smarandache, Florentin
    SYMMETRY-BASEL, 2018, 10 (06):