On-demand reverse design of polymers with PolyTAO

被引:0
|
作者
Qiu, Haoke [1 ,2 ]
Sun, Zhao-Yan [1 ,2 ]
机构
[1] State Key Laboratory of Polymer Physics and Chemistry & amp,Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun,130022, China
[2] School of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui, Hefei,230026, China
关键词
D O I
10.1038/s41524-024-01466-5
中图分类号
学科分类号
摘要
The forward screening and reverse design of drug molecules, inorganic molecules, and polymers with enhanced properties are vital for accelerating the transition from laboratory research to market application. Specifically, due to the scarcity of large-scale datasets, the discovery of polymers via materials informatics is particularly challenging. Nonetheless, scientists have developed various machine learning models for polymer structure-property relationships using only small polymer datasets, thereby advancing the forward screening process of polymers. However, the success of this approach ultimately depends on the diversity of the candidate pool, and exhaustively enumerating all possible polymer structures through human imagination is impractical. Consequently, achieving on-demand reverse design of polymers is essential. In this work, we curate an immense polymer dataset containing nearly one million polymeric structure-property pairs based on expert knowledge. Leveraging this dataset, we propose a Transformer-Assisted Oriented pretrained model for on-demand polymer generation (PolyTAO). This model generates polymers with 99.27% chemical validity in top-1 generation mode (approximately 200k generated polymers), representing the highest reported success rate among polymer generative models, and this was achieved on the largest test set. Importantly, the average R2 between the properties of the generated polymers and their expected values across 15 predefined properties is 0.96, which underscores PolyTAO’s powerful on-demand polymer generation capabilities. To further evaluate the pretrained model’s performance in generating polymers with additional user-defined properties for downstream tasks, we conduct fine-tuning experiments on three publicly available small polymer datasets using both semi-template and template-free generation paradigms. Through these extensive experiments, we demonstrate that our pretrained model and its fine-tuned versions are capable of achieving the on-demand reverse design of polymers with specified properties, whether in a semi-template generation or the more challenging template-free generation scenarios, showcasing its potential as a unified pretrained foundation model for polymer generation.
引用
收藏
相关论文
共 50 条
  • [21] On-demand molecular design for efficient blue phosphorescence
    Meiqi Dai
    Dongpeng Yan
    Science China(Chemistry), 2024, 67 (07) : 2124 - 2126
  • [22] On-demand DWDM design using machine learning
    K. Venkatesan
    A. Chandrasekar
    P. G. V. Ramesh
    Soft Computing, 2022, 26 : 6577 - 6589
  • [23] Optimal network design for an on-demand transport system
    Cai, Zhijie
    Li, Xinyan
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2006, 17 : 129 - 140
  • [24] On-demand molecular design for efficient blue phosphorescence
    Meiqi Dai
    Dongpeng Yan
    Science China(Chemistry), 2024, (07) : 2124 - 2126
  • [25] On-demand DWDM design using machine learning
    Venkatesan, K.
    Chandrasekar, A.
    Ramesh, P. G., V
    SOFT COMPUTING, 2022, 26 (14) : 6577 - 6589
  • [26] Design of water distribution networks for on-demand irrigation
    Alandi P.P.
    Martín-Benito J.M.T.
    Alvarez J.F.O.
    Martínez M.I.C.
    Irrigation Science, 2001, 20 (04) : 189 - 201
  • [27] On-demand service in grid: Architecture, design and implementation
    Huang, ZC
    He, C
    Gu, L
    Wu, JF
    11th International Conference on Parallel and Distributed Systems Workshops, Vol II, Proceedings,, 2005, : 674 - 678
  • [28] Mechanically triggered on-demand degradation of polymers synthesized by radical polymerizations
    Liu, Peng
    Jimaja, Setuhn
    Immel, Stefan
    Thomas, Christoph
    Mayer, Michael
    Weder, Christoph
    Bruns, Nico
    NATURE CHEMISTRY, 2024, 16 (07) : 1184 - 1192
  • [29] Magnetically Actuated Shape Memory Polymers for On-Demand Drug Delivery
    Vakil, Anand Utpal
    Ramezani, Maryam
    Monroe, Mary Beth B.
    MATERIALS, 2022, 15 (20)
  • [30] Integrated Network Design and Demand Forecast for On-Demand Urban Air Mobility
    Wu, Zhiqiang
    Zhang, Yu
    ENGINEERING, 2021, 7 (04) : 473 - 487