Laser-driven nematic flow in microfluidic devices

被引:0
|
作者
Śliwa, Izabela [1 ]
Maslennikov, Pavel V. [2 ]
Shcherbinin, Dmitrii P. [3 ]
Zakharov, Alex V. [4 ,5 ]
机构
[1] Poznań University of Economics and Business, Al. Niepodleglosci 10, Poznan,61-875, Poland
[2] Immanuel Kant Baltic Federal University, Str. Universitetskaya 2, Kaliningrad,236040, Russia
[3] International Research and Educational Centre for Physics of Nanostructures, ITMO University, Kronverksky Prospekt 49, Bldg. A, St. Petersburg,197101, Russia
[4] Saint Petersburg Institute for Machine Sciences, The Russian Academy of Sciences, St. Petersburg,199178, Russia
[5] World-Class Research Center for Advanced Digital Technologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg,195251, Russia
关键词
Based on a nonlinear extension of the Ericksen-Leslie theory; taking into account the entropy balance equation; a theoretical study of a thermally excited vortex flow in a microsized hybrid-aligned nematic (HAN) volume was carried out. Analysis of the numerical results show that due to interaction between the gradients of the director field ∇n and temperature ∇T; caused by the focused laser radiation; the thermally excited vortical fluid flow is maintained in the bulk of the HAN channel. Calculations have shown that the features of the vortex flow are influenced not only by the direction of the heat flux relative to the bounding surfaces; but also by the orientational defect on these surfaces. © 2024 American Physical Society;
D O I
10.1103/PhysRevE.110.064702
中图分类号
学科分类号
摘要
引用
下载
收藏
相关论文
共 50 条
  • [31] Laser-driven mini-thrusters
    Sterling, Enrique
    Lin, Jun
    Sinko, John
    Kodgis, Lisa
    Porter, Simon
    Pakhomov, Andrew V.
    Larson, C. William
    Mead, Franklin B., Jr.
    BEAMED ENERGY PROPULSION, 2006, 830 : 247 - +
  • [32] Laser-driven ultrafast antiproton beam
    Li, Shun
    Pei, Zhikun
    Shen, Baifei
    Xu, Jiancai
    Zhang, Lingang
    Zhang, Xiaomei
    Xu, Tongjun
    Yu, Yong
    Bu, Zhigang
    PHYSICS OF PLASMAS, 2018, 25 (02)
  • [33] Laser-driven inertial ion focusing
    Zhuo, H. B.
    Yu, Wei
    Yu, M. Y.
    Xu, H.
    Wang, X.
    Shen, B. F.
    Sheng, Z. M.
    Zhang, J.
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [34] LASER-DRIVEN DETONATION WAVES IN GASES
    DAIBER, JW
    THOMPSON, HM
    PHYSICS OF FLUIDS, 1967, 10 (06) : 1162 - &
  • [35] Proton radiography of a laser-driven implosion
    Mackinnon, A. J.
    Patel, P. K.
    Borghesi, M.
    Clarke, R. C.
    Freeman, R. R.
    Habara, H.
    Hatchett, S. P.
    Hey, D.
    Hicks, D. G.
    Kar, S.
    Key, M. H.
    King, J. A.
    Lancaster, K.
    Neely, D.
    Nikkro, A.
    Norreys, P. A.
    Notley, M. M.
    Phillips, T. W.
    Romagnani, L.
    Snavely, R. A.
    Stephens, R. B.
    Town, R. P. J.
    PHYSICAL REVIEW LETTERS, 2006, 97 (04)
  • [36] Laser-driven Acceleration in Clustered Plasmas
    Gao, X.
    Wang, X.
    Shim, B.
    Downer, M. C.
    ADVANCED ACCELERATOR CONCEPTS, 2009, 1086 : 142 - 146
  • [37] Developments in laser-driven plasma accelerators
    Hooker, S.M. (simon.hooker@physics.ox.ac.uk), 1600, Nature Publishing Group (07):
  • [38] Laser-driven blackbody radiator with bistability
    Li, Li
    Li, Hong
    Zhang, Zhenguo
    Zhang, Xinlu
    Zhao, Jiaqun
    Cui, Jinhui
    APPLIED PHYSICS B-LASERS AND OPTICS, 2014, 116 (04): : 867 - 873
  • [39] Laser-driven polyplanar optic display
    Veligdan, JT
    Beiser, L
    Biscardi, C
    Brewster, C
    DeSanto, L
    FABRICATION, TESTING, AND RELIABILITY OF SEMICONDUCTOR LASERS III, 1998, 3285 : 104 - 114
  • [40] A study of laser-driven flyer plates
    Hatt, DJ
    Waschl, JA
    SHOCK COMPRESSION OF CONDENSED MATTER - 1995, 1996, 370 : 1221 - 1224