PyAdMesh: A novel high-performance software for adaptive finite element analysis

被引:0
|
作者
Gharebaghi, S. Asil [1 ]
Khatami, A. H. [1 ]
机构
[1] KN Toosi Univ Technol, Tehran, Iran
关键词
PyAdMesh; Adaptive finite element; Data transfer operators; Parallel processing; GPU acceleration; SUPERCONVERGENT PATCH RECOVERY; DATA TRANSFER OPERATORS; STRAIN LOCALIZATION; MEMORY PERFORMANCE; ERROR ESTIMATION; AMDAHLS LAW; MULTICORE; CUDA; SPR;
D O I
10.1016/j.simpat.2025.103074
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study introduces PyAdMesh, an open-source software for reducing discretization errors in finite element analysis using an h-adaptive method. Adaptive approaches iteratively refine meshes to minimize errors but require substantial computational resources due to repeated analyses. PyAdMesh addresses this challenge by employing efficient data transfer operators for displacement, stress, and strain, avoiding full reanalysis. The software achieves performance gains through parallel processing on CPU and GPU, leveraging CuPy, Numba, and Python's multiprocessing library. GPU parallelization achieves speed-ups of 30 times compared to serial execution, while CPU parallelization yields an 8-fold improvement. PyAdMesh reduces discretization error from 5.5% to 0.07% using a recovery-based error estimation method. Despite low-end hardware, including an Intel Xeon 6148 CPU and NVIDIA Quadro P4000 GPU, the software demonstrates significant potential for adaptive finite element analysis. Future studies should explore its performance on high-end hardware. This work highlights PyAdMesh's potential for large-scale engineering simulations, balancing computational efficiency and accuracy.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Finite Element Analysis on Axial Compressive Behaviors of High-Performance Steel Stiffened Plates in Bridge Application
    Yongxuan Li
    Yuqing Liu
    Rong Liu
    International Journal of Steel Structures, 2019, 19 : 1624 - 1644
  • [32] Research of Finite Element Analysis Software Performance Relation to the type of Operating System
    Tarvydas, P.
    Noreika, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 119 (03) : 49 - 52
  • [33] Gemini: A Novel Hardware and Software Implementation of High-performance PCIe SSD
    Yang Ou
    Nong Xiao
    Fang Liu
    Zhiguang Chen
    Wei Chen
    Lizhou Wu
    International Journal of Parallel Programming, 2017, 45 : 923 - 945
  • [34] Gemini: A Novel Hardware and Software Implementation of High-performance PCIe SSD
    Ou, Yang
    Xiao, Nong
    Liu, Fang
    Chen, Zhiguang
    Chen, Wei
    Wu, Lizhou
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2017, 45 (04) : 923 - 945
  • [35] Finite Element High-Performance Code for Seismic Wave Propagation in Heterogeneous Media
    Martins, C. J.
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, GRID AND CLOUD COMPUTING FOR ENGINEERING, 2011, 95
  • [36] High performance finite element analysis of composite aeroelastic structures
    Maheri, A.
    Daadbin, A.
    HIGH PERFORMANCE STRUCTURES AND MATERIALS V, 2010, 112 : 15 - 26
  • [37] SOFTWARE ENGINEERING FOR FINITE-ELEMENT ANALYSIS
    NAGY, DA
    JOURNAL OF THE STRUCTURAL DIVISION-ASCE, 1978, 104 (08): : 1287 - 1298
  • [38] A new software architecture for finite element analysis
    Archer, G
    Thewalt, C
    Fenves, GL
    COMPUTING IN CIVIL ENGINEERING, 1996, : 683 - 689
  • [39] A Novel Adaptive Mesh Finite Element Method for Nonlinear Magnetic Field Analysis
    Zhao, Yanpu
    Ho, S. L.
    Fu, W. N.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (05) : 1777 - 1780
  • [40] Thermal finite element analysis of complex heat sinks using open source tools and high-performance computing
    Ramirez Gil, Francisco Javier
    Delgado-Mejia, Alvaro
    Foronda-Obando, Esteban
    Carlos Olmos-Villalba, Luis
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2023, (106): : 124 - 133