Rainfall rate prediction using recurrent neural network with long short-term memory algorithm: Iraq case study

被引:0
|
作者
Yas, Qahtan M. [1 ]
Hameed, Younis Kadthem [2 ]
机构
[1] Univ Diyala Diyala Campus, Vet Med Coll, Dept Comp Sci, Baqubah, Diyala, Iraq
[2] Univ Diyala Diyala Campus, Adm & Econ Coll, Dept Publ Adm, Baqubah, Diyala, Iraq
关键词
recurrent neural network; long- and short-term memory; rainfall rate; machine learning; Iraq;
D O I
10.1504/IJCAT.2024.141352
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Rainfall is one of the primary sources of water for many countries in the world. Recently, the problem of variant rainfall rates has emerged in most countries, especially in the Middle East, due to the phenomenon of global warming. Consequently, this phenomenon affected all aspects of human life, especially the agricultural sector. To address this problem, machine learning algorithms were adopted to predict rainfall in Al-Diwaniya city in Iraq. A Recurrent Neural Network (RNN) algorithm based on Long- and Short-Term Memory (LSTM) technology was applied. This technique was implemented by calculating the weight of previous observations or time shift variables in the form of time series based on the simulating neural networks. This network is trained to reach the minimum Mean Square Error (MSE) rate by adjusting the values of the estimated weights for the chosen model structure. The finding of the study showed the prediction values for LSTM are better than the RNN algorithm according to the MSE values that are obtained.
引用
收藏
页码:125 / 135
页数:12
相关论文
共 50 条
  • [1] Long Short-Term Memory Recurrent Neural Network for Urban Traffic Prediction: A Case Study of Seoul
    Lee, Yong-Ju
    Min, OkGee
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 1279 - 1284
  • [2] Stock Price Prediction With Long Short-Term Memory Recurrent Neural Network
    Jeenanunta, Chawalit
    Chaysiri, Rujira
    Thong, Laksmey
    2018 INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS AND INTELLIGENT TECHNOLOGY & INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (ICESIT-ICICTES), 2018,
  • [3] Performance prediction of fuel cells using long short-term memory recurrent neural network
    Zheng, Lu
    Hou, Yongping
    Zhang, Tao
    Pan, Xiangmin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (06) : 9141 - 9161
  • [4] Work in Progress Level Prediction with Long Short-Term Memory Recurrent Neural Network
    Gallina, Viola
    Lingitz, Lukas
    Breitschopf, Johannes
    Zudor, Elisabeth
    Sihn, Wilfried
    10TH CIRP SPONSORED CONFERENCE ON DIGITAL ENTERPRISE TECHNOLOGIES (DET 2020) - DIGITAL TECHNOLOGIES AS ENABLERS OF INDUSTRIAL COMPETITIVENESS AND SUSTAINABILITY, 2021, 54 : 136 - 141
  • [5] TBM penetration rate prediction based on the long short-term memory neural network
    Gao, Boyang
    Wang, RuiRui
    Lin, Chunjin
    Guo, Xu
    Liu, Bin
    Zhang, Wengang
    UNDERGROUND SPACE, 2021, 6 (06) : 718 - 731
  • [6] Long Short-term Memory Neural Network for Network Traffic Prediction
    Zhuo, Qinzheng
    Li, Qianmu
    Yan, Han
    Qi, Yong
    2017 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (IEEE ISKE), 2017,
  • [7] Long short-term memory neural network for glucose prediction
    Carrillo-Moreno, Jaime
    Perez-Gandia, Carmen
    Sendra-Arranz, Rafael
    Garcia-Saez, Gema
    Hernando, M. Elena
    Gutierrez, Alvaro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09): : 4191 - 4203
  • [8] Long short-term memory neural network for glucose prediction
    Jaime Carrillo-Moreno
    Carmen Pérez-Gandía
    Rafael Sendra-Arranz
    Gema García-Sáez
    M. Elena Hernando
    Álvaro Gutiérrez
    Neural Computing and Applications, 2021, 33 : 4191 - 4203
  • [9] Prediction of diabetic patients in Iraq using binary dragonfly algorithm with long-short term memory neural network
    Alhakeem Z.M.
    Hakim H.
    Hasan O.A.
    Laghari A.A.
    Jumani A.K.
    Jasm M.N.
    AIMS Electronics and Electrical Engineering, 2023, 7 (03): : 217 - 230
  • [10] Predicting Short-term Traffic Flow by Long Short-Term Memory Recurrent Neural Network
    Tian, Yongxue
    Pan, Li
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 153 - 158