FedASA: A Personalized Federated Learning With Adaptive Model Aggregation for Heterogeneous Mobile Edge Computing

被引:0
|
作者
Deng, Dongshang [1 ,2 ]
Wu, Xuangou [1 ,2 ]
Zhang, Tao [3 ,4 ]
Tang, Xiangyun [5 ]
Du, Hongyang [6 ]
Kang, Jiawen [7 ]
Liu, Jiqiang [3 ]
Niyato, Dusit [8 ]
机构
[1] Anhui University of Technology, School of Computer Science and Technology, Ma'anshan,243002, China
[2] Anhui Province Key Laboratory of Digital Twin Technology in Metallurgical Industry, Ma'anshan,243002, China
[3] Beijing Jiaotong University, School of Cyberspace Science and Technology, Beijing,100044, China
[4] Anhui Engineering Research Center for Intelligent Applications and Security of Industrial Internet, Beijing,100044, China
[5] Minzu University of China, School of Information Engineering, Beijing,100081, China
[6] University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong
[7] Guangdong University of Technology, School of Automation, Guangzhou,510006, China
[8] Nanyang Technological University, College of Computing and Data Science, 639798, Singapore
基金
中国国家自然科学基金; 中国博士后科学基金; 新加坡国家研究基金会;
关键词
Adversarial machine learning - Contrastive Learning - Mobile edge computing;
D O I
10.1109/TMC.2024.3446271
中图分类号
学科分类号
摘要
Federated learning (FL) opens a new promising paradigm for the Industrial Internet of Things (IoT) since it can collaboratively train machine learning models without sharing private data. However, deploying FL frameworks in real IoT scenarios faces three critical challenges, i.e., statistical heterogeneity, resource constraint, and fairness. To address these challenges, we design a fair and efficient FL method, termed FedASA, which can address the challenge of statistical heterogeneity in resource-constrained scenarios by determining the shared architecture adaptively. In FedASA, we first present a cell-wised shared architecture selection strategy, which can adaptively construct the shared architecture for each device. We then design a cell-based aggregation algorithm for aggregating heterogeneous shared architectures. In addition, we provide a theoretical analysis of the federated error bound, which provides a theoretical guarantee for the fairness. At the same time, we prove the convergence of FedASA at the first-order stationary point. We evaluate the performance of FedASA through extensive simulation and experiments. Experimental results in cross-location scenarios show that FedASA outperformed the state-of-the-art approaches, improving accuracy by up to 13.27% with better fairness and faster convergence and communication requirement has been reduced by 81.49%. © 2002-2012 IEEE.
引用
下载
收藏
页码:14787 / 14802
相关论文
共 50 条
  • [31] Privacy Preservation for Federated Learning With Robust Aggregation in Edge Computing
    Liu, Wentao
    Xu, Xiaolong
    Li, Dejuan
    Qi, Lianyong
    Dai, Fei
    Dou, Wanchun
    Ni, Qiang
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (08) : 7343 - 7355
  • [32] On-the-fly Resource-Aware Model Aggregation for Federated Learning in Heterogeneous Edge
    Nguyen, Hung T.
    Morabito, Roberto
    Kim, Kwang Taik
    Chiang, Mung
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [33] NestFL: Efficient Federated Learning through Progressive Model Pruning in Heterogeneous Edge Computing
    Zhou, Xiaomao
    Jia, Qingmin
    Xie, Renchao
    PROCEEDINGS OF THE 2022 THE 28TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING, ACM MOBICOM 2022, 2022, : 817 - 819
  • [34] Peaches: Personalized Federated Learning With Neural Architecture Search in Edge Computing
    Yan, Jiaming
    Liu, Jianchun
    Xu, Hongli
    Wang, Zhiyuan
    Qiao, Chunming
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (11) : 10296 - 10312
  • [35] Personalized federated learning for heterogeneous data: A distributed edge clustering approach
    Firdaus, Muhammad
    Noh, Siwan
    Qian, Zhuohao
    Larasati, Harashta Tatimma
    Rhee, Kyung-Hyune
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (06) : 10725 - 10740
  • [36] Like Attracts Like: Personalized Federated Learning in Decentralized Edge Computing
    Ma, Zhenguo
    Xu, Yang
    Xu, Hongli
    Liu, Jianchun
    Xue, Yinxing
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (02) : 1080 - 1096
  • [37] Multicore Federated Learning for Mobile-Edge Computing Platforms
    Bai, Yang
    Chen, Lixing
    Li, Jianhua
    Wu, Jun
    Zhou, Pan
    Xu, Zichuan
    Xu, Jie
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (07): : 5940 - 5952
  • [38] Decentralized Federated Learning With Intermediate Results in Mobile Edge Computing
    Chen, Suo
    Xu, Yang
    Xu, Hongli
    Jiang, Zhida
    Qiao, Chunming
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (01) : 341 - 358
  • [39] Offloading in Mobile Edge Computing Based on Federated Reinforcement Learning
    Dai, Yu
    Xue, Qing
    Gao, Zhen
    Zhang, Qiuhong
    Yang, Lei
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [40] A reliable and fair federated learning mechanism for mobile edge computing
    Huang, Xiaohong
    Han, Lu
    Li, Dandan
    Xie, Kun
    Zhang, Yong
    COMPUTER NETWORKS, 2023, 226