Logarithmic Kernel Relaxed Collaborative Representation with Scaled MST Dictionary Construction for Hyperspectral Anomaly Detection

被引:0
|
作者
Zhao, Yang [1 ]
Su, Hongjun [2 ]
Wu, Zhaoyue [3 ]
Xue, Zhaohui [2 ]
Du, Qian [4 ]
机构
[1] Hohai University, School of Earth Sciences and Engineering, Nanjing,211100, China
[2] Hohai University, College of Geography and Remote Sensing, Nanjing,211100, China
[3] University of Extremadura, Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications, Cáceres,10003, Spain
[4] Mississippi State University, Department of Electrical and Computer Engineering, Starkville,MS,39762, United States
基金
中国国家自然科学基金;
关键词
Jurassic - Remote sensing;
D O I
10.1109/JSTARS.2024.3476319
中图分类号
学科分类号
摘要
Representation-based anomaly detection methods are one of the most popular methods in hyperspectral anomaly detection. Nevertheless, linear models of have difficulties in adequately describing complex data and generating a decision boundary for anomaly-background separation. To relax such a limitation, a novel kernel relaxed collaboration representation anomaly detection method is proposed. A new logarithmic kernel function is used to map the raw data into a high-dimensional feature space where anomalies and background are more separable. Meanwhile, the scaled minimum spanning tree method is adopted to cluster the data and select representative pixels to construct a pure dictionary. Then, the distance from a testing pixel to each dictionary atom is calculated using the KNN method, and atoms with the closest distance are selected to construct a nonglobal dictionary for the testing pixel. The proposed method becomes more robust due to the contamination of anomalies from the dictionary is removed. The experiments on four real datasets demonstrate that the proposed method has significant advantages over currently existing methods. © 2008-2012 IEEE.
引用
收藏
页码:18652 / 18665
相关论文
共 50 条
  • [1] Hyperspectral Anomaly Detection With Relaxed Collaborative Representation
    Wu, Zhaoyue
    Su, Hongjun
    Tao, Xuanwen
    Han, Lirong
    Paoletti, Mercedes E.
    Haut, Juan M.
    Plaza, Javier
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] ADAPTIVE DICTIONARY CONSTRUCTION FOR HYPERSPECTRAL ANOMALY DETECTION BASED ON COLLABORATIVE REPRESENTATION
    Wu, Z.
    Su, H.
    Tao, X.
    Han, L.
    Paoletti, M. E.
    Haut, J. M.
    Plaza, J.
    Plaza, A.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1979 - 1982
  • [3] Hyperspectral anomaly detection based on adaptive background dictionary construction and collaborative representation
    Xu, Mingming
    Zhang, Jinhao
    Liu, Shanwei
    Sheng, Hui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (10) : 3349 - 3369
  • [4] Low rank and collaborative representation for hyperspectral anomaly detection via robust dictionary construction
    Su, Hongjun
    Wu, Zhaoyue
    Zhu, A-Xing
    Du, Qian
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 169 (169) : 195 - 211
  • [5] Hyperspectral Anomaly Detection based on Collaborative Representation of Dictionary Subspace
    Yang, Yiyi
    Xiang, Pei
    Zhou, Huixin
    Li, Huan
    Li, Yuyan
    Zhao, Xing
    Li, Miaoqing
    AOPC 2019: OPTICAL SENSING AND IMAGING TECHNOLOGY, 2019, 11338
  • [6] Collaborative Representation for Hyperspectral Anomaly Detection
    Li, Wei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03): : 1463 - 1474
  • [7] Nonnegative-Constrained Joint Collaborative Representation With Union Dictionary for Hyperspectral Anomaly Detection
    Chang, Shizhen
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Nonnegative collaborative representation for hyperspectral anomaly detection
    Hu, Haojie
    Yao, Minli
    He, Fang
    Zhang, Fenggan
    Zhao, Jianwei
    Yan, Shuai
    REMOTE SENSING LETTERS, 2022, 13 (04) : 352 - 361
  • [9] Relaxed Collaborative Representation With Low-Rank and Sparse Matrix Decomposition for Hyperspectral Anomaly Detection
    Su, Hongjun
    Zhang, Huihui
    Wu, Zhaoyue
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6826 - 6842
  • [10] Hyperspectral Anomaly Detection via Sparse Representation and Collaborative Representation
    Lin, Sheng
    Zhang, Min
    Cheng, Xi
    Zhou, Kexue
    Zhao, Shaobo
    Wang, Hai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 946 - 961