DISTRIBUTED SEQUENTIAL QUADRATIC PROGRAMMING WITH OVERLAPPING GRAPH DECOMPOSITION AND EXACT AUGMENTED LAGRANGIAN

被引:0
|
作者
Ni, Runxin [1 ]
Na, Sen [2 ]
Shin, Sungho [3 ]
Anitescu, Mihai [1 ,3 ]
机构
[1] Department of Statistics, University of Chicago, Chicago,IL, United States
[2] ICSI, Department of Statistics, University of California, Berkeley,CA, United States
[3] Mathematics and Computer Science Division, Argonne National Laboratory, Lemont,IL, United States
来源
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Quadratic programming
引用
收藏
相关论文
共 50 条
  • [31] Decomposition Methods for Distributed Quadratic Programming with Application to Distributed Model Predictive Control
    Costantini, Giuliano
    Rostami, Ramin
    Goerges, Daniel
    2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 943 - 950
  • [32] ON CONVERGENCE OF AUGMENTED LAGRANGIAN METHOD FOR INVERSE SEMI-DEFINITE QUADRATIC PROGRAMMING PROBLEMS
    Xiao, Xiantao
    Zhang, Liwei
    Zhang, Jianzhong
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2009, 5 (02) : 319 - 339
  • [33] QSDPNAL: a two-phase augmented Lagrangian method for convex quadratic semidefinite programming
    Li X.
    Sun D.
    Toh K.-C.
    Mathematical Programming Computation, 2018, 10 (4) : 703 - 743
  • [35] An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem
    Billionnet, A
    Soutif, T
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 157 (03) : 565 - 575
  • [36] Solution of boolean quadratic programming problems by two augmented Lagrangian algorithms based on a continuous relaxation
    Rupaj Kumar Nayak
    Nirmalya Kumar Mohanty
    Journal of Combinatorial Optimization, 2020, 39 : 792 - 825
  • [37] Solution of boolean quadratic programming problems by two augmented Lagrangian algorithms based on a continuous relaxation
    Nayak, Rupaj Kumar
    Mohanty, Nirmalya Kumar
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (03) : 792 - 825
  • [38] Vehicle Energy Management with Ecodriving: A Sequential Quadratic Programming Approach with Dual Decomposition
    Khalik, Z.
    Padilla, G. P.
    Romijn, T. C. J.
    Donkers, M. C. F.
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 4002 - 4007
  • [39] A sequential-quadratic-programming algorithm using orthogonal decomposition with Gerschgorin stabilization
    Teng, CP
    Angeles, J
    JOURNAL OF MECHANICAL DESIGN, 2001, 123 (04) : 501 - 509
  • [40] Solving the unit commitment problem of hydropower plants via Lagrangian Relaxation and Sequential Quadratic Programming
    Finardi, Erlon C.
    da Silva, Edson L.
    Sagastizabal, Claudia
    COMPUTATIONAL & APPLIED MATHEMATICS, 2005, 24 (03): : 317 - 341