RANDOM LIPSCHITZ FUNCTIONS ON GRAPHS WITH WEAK EXPANSION

被引:0
|
作者
Işik, Senem [1 ]
Park, Jinyoung [2 ]
机构
[1] Department of Mathematics, Stanford University, United States
[2] Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, United States
来源
关键词
Compilation and indexing terms; Copyright 2025 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Random processes
引用
收藏
相关论文
共 50 条
  • [41] THE WEAK ZERO-ONE LAW FOR THE RANDOM DISTANCE GRAPHS
    Zhukovskii, M. E.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (02) : 356 - 360
  • [42] The weak zero-one laws for the random distance graphs
    Zhukovskii, M. E.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 51 - 54
  • [43] Expected hitting times for random walks on weak products of graphs
    González-Arévalo, B
    Palacios, JL
    STATISTICS & PROBABILITY LETTERS, 1999, 43 (01) : 33 - 39
  • [44] The weak zero-one laws for the random distance graphs
    M. E. Zhukovskii
    Doklady Mathematics, 2010, 81 : 51 - 54
  • [45] Semi-Lipschitz functions and machine learning for discrete dynamical systems on graphs
    Falciani, H.
    Sanchez-Perez, E. A.
    MACHINE LEARNING, 2022, 111 (05) : 1765 - 1797
  • [46] Semi-Lipschitz functions and machine learning for discrete dynamical systems on graphs
    H. Falciani
    E. A. Sánchez-Pérez
    Machine Learning, 2022, 111 : 1765 - 1797
  • [47] Minimal Lipschitz and ∞-harmonic extensions of vector-valued functions on finite graphs
    Bacak, Miroslav
    Hertrich, Johannes
    Neumayer, Sebastian
    Steidl, Gabriele
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2020, 9 (04) : 935 - 959
  • [48] Weak invariance principles for sums of dependent random functions
    Berkes, Istvan
    Horvath, Lajos
    Rice, Gregory
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (02) : 385 - 403
  • [49] Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales
    Christofides, Demetres
    Markstrom, Klas
    RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (01) : 88 - 100
  • [50] Lipschitz Functions
    Kunzinger, M.
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (01): : 231 - 231