Multi-dimensional ability diagnosis for machine learning algorithms

被引:0
|
作者
Qi LIU [1 ]
Zheng GONG [1 ]
Zhenya HUANG [1 ]
Chuanren LIU [2 ]
Hengshu ZHU [3 ]
Zhi LI [4 ]
Enhong CHEN [1 ]
Hui XIONG [5 ]
机构
[1] State Key Laboratory of Cognitive Intelligence, University of Science and Technology of China
[2] Business Analytics and Statistics, The University of Tennessee
[3] Computer Network Information Center, Chinese Academy of Sciences
[4] Shenzhen International Graduate School, Tsinghua University
[5] Hong Kong University of Science and Technology
关键词
D O I
暂无
中图分类号
TP181 [自动推理、机器学习];
学科分类号
摘要
<正>A significant proportion of noticeable improvement in machine learning architectures actually benefits from the consistent inspiration of the way human learning [1]. For instance, curriculum learning [2] is inspired by highly organized human education systems, i.e., training the algorithms with easy samples first and gradually transforming to the hard examples can contribute to faster convergence and lower generalization error.
引用
收藏
页码:321 / 322
页数:2
相关论文
共 50 条
  • [21] Detectability of multi-dimensional movement and behaviour in cattle using sensor data and machine learning algorithms: Study on a Charolais bull
    Biszkup, Miklos
    Vasarhelyi, Gabor
    Setiawan, Nuri Nurlaila
    Marton, Aliz
    Szentes, Szilard
    Balogh, Petra
    Babay-Torok, Barbara
    Pajor, Gabor
    Drexler, Dora
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2024, 14 : 86 - 98
  • [22] MULTI-DIMENSIONAL DIAGNOSIS AND PSYCHIATRIC CLASSIFICATION
    Kretschmer, Wolfgang, Jr.
    ENCEPHALE-REVUE DE PSYCHIATRIE CLINIQUE BIOLOGIQUE ET THERAPEUTIQUE, 1951, 40 (04): : 299 - 311
  • [23] Multi-dimensional criteria for the diagnosis of depression
    Angst, J
    Merikangas, KR
    JOURNAL OF AFFECTIVE DISORDERS, 2001, 62 (1-2) : 7 - 15
  • [24] Multi-Dimensional Dynamic Loop Scheduling Algorithms
    Chronopoulos, Anthony T.
    Ni, Lionel M.
    Penmatsa, Satish
    2007 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING, 2007, : 241 - +
  • [25] Multi-Dimensional and Objective Assessment of Motion Sickness Susceptibility Based on Machine Learning
    Li, Cong-cong
    Zhang, Zhuo-ru
    Liu, Yu-hui
    Zhang, Tao
    Zhang, Xu-tao
    Wang, Han
    Wang, Xiao-cheng
    FRONTIERS IN NEUROLOGY, 2022, 13
  • [26] Multi-dimensional proprio-proximus machine learning for assessment of myocardial infarction
    Yang Feng
    Yang Xulei
    Kng, Teo Soo
    Lee, Gary
    Liang, Zhong
    San, Tan Ru
    Yi, Su
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 70 : 63 - 72
  • [27] MetaA: Multi-Dimensional Evaluation of Testing Ability via Adversarial Examples in Deep Learning
    Gu, Siqi
    Liu, Jiawei
    Hui, Zhanwei
    Liu, Wenhong
    Chen, Zhenyu
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY, QRS, 2022, : 1004 - 1013
  • [28] The multi-dimensional nature of vocal learning
    Vernes, Sonja C.
    Kriengwatana, Buddhamas Pralle
    Beeck, Veronika C.
    Fischer, Julia
    Tyack, Peter L.
    ten Cate, Carel
    Janik, Vincent M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2021, 376 (1836)
  • [29] Multi-Dimensional Fair Federated Learning
    Su, Cong
    Yu, Guoxian
    Wang, Jun
    Li, Hui
    Li, Qingzhong
    Yu, Han
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 15083 - 15090
  • [30] Research on motion recognition based on multi-dimensional sensing data and deep learning algorithms
    Qiu, Jia-Gang
    Li, Yi
    Liu, Hao-Qi
    Lin, Shuang
    Pang, Lei
    Sun, Gang
    Song, Ying-Zhe
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 14578 - 14595