Temperature Effects of Electrorheological Fluids Based on One-Dimensional Calcium and Titanium Precipitate

被引:0
|
作者
严仁杰 [1 ]
吴敬华 [2 ]
李丛 [1 ]
许高杰 [2 ]
周鲁卫 [1 ]
机构
[1] State Key Laboratory of Surface Physics,and Department of Physics,Fudan University
[2] Ningbo Institute of Material Technology and Engineering,Chinese Academy of
关键词
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Electrorheological(ER) fluids based on nanorods of calcium and titanium precipitate(CTP) possess good ER performance.We investigate the shear stress and leaking current of CTP suspension from —15 to 230℃,and it is found that the ER effect increases at up to 150°C.Dielectric spectra of the CTP suspension at different temperatures indicate that the change of interface polarization can perfectly interpret the increment of ER effect and leaking current.The Fourier transform infrared(FTIR) spectroscopy test shows that some compositions of the CTP particles decompose at temperature of 180℃,which leads to a consequential decrease of ER effect.Through thermogravimetric and differential thermal analyses(TG-DTA),we End that TiOC2 O4(H2O)2 plays a key role in the dielectric property and ER effect of CTP suspension.
引用
收藏
页码:134 / 138
页数:5
相关论文
共 50 条
  • [31] MACROSCOPIC LIMIT OF A ONE-DIMENSIONAL MODEL FOR AGING FLUIDS
    Benoit, David
    Le Bris, Claude
    Lelievre, Tony
    MULTISCALE MODELING & SIMULATION, 2014, 12 (03): : 1335 - 1378
  • [32] Temporal coherence of one-dimensional nonequilibrium quantum fluids
    Ji, Kai
    Gladilin, Vladimir N.
    Wouters, Michiel
    PHYSICAL REVIEW B, 2015, 91 (04):
  • [33] Fermionization and bosonization of expanding one-dimensional anyonic fluids
    del Campo, A.
    PHYSICAL REVIEW A, 2008, 78 (04):
  • [34] Global solutions for a one-dimensional problem in conducting fluids
    Zhang, Jingjun
    Zhu, Junlei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (08) : 1989 - 2006
  • [35] One-Dimensional Dynamics of Jet Flows of Elastic Fluids
    Entov V.M.
    Kestenboim K.S.
    Pokrovsky S.V.
    Shugay G.A.
    Fluid Dynamics, 1997, 32 (6) : 761 - 771
  • [36] EXACT EQUATIONS OF STATE FOR ONE-DIMENSIONAL CHAIN FLUIDS
    HONNELL, KG
    HALL, CK
    JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (3-4) : 803 - 842
  • [37] ONE-DIMENSIONAL PATTERNS AND WAVELENGTH SELECTION IN MAGNETIC FLUIDS
    WIRTZ, D
    FERMIGIER, M
    PHYSICAL REVIEW LETTERS, 1994, 72 (14) : 2294 - 2297
  • [38] Split Fermi seas in one-dimensional Bose fluids
    Fokkema, T.
    Eliens, I. S.
    Caux, J-S
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [39] Existence of solutions to a model for sparse, one-dimensional fluids
    Hoff, David
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (02) : 1083 - 1113
  • [40] NEGATIVE THERMAL-EXPANSION IN ONE-DIMENSIONAL FLUIDS
    YOSHIMURA, Y
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1991, 95 (02): : 135 - 145