Learning to control an inverted pendulum using Q-learning and neural networks

被引:0
|
作者
Jiang, Guofei [1 ]
Wu, Cangpu [1 ]
机构
[1] Beijing Inst of Technology, Beijing, China
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
下载
收藏
页码:662 / 666
相关论文
共 50 条
  • [21] LEARNING HOSE TRANSPORT CONTROL WITH Q-LEARNING
    Fernandez-Gauna, Borja
    Manuel Lopez-Guede, Jose
    Zulueta, Ekaitz
    Grana, Manuel
    NEURAL NETWORK WORLD, 2010, 20 (07) : 913 - 923
  • [22] Neural Q-learning for solving PDEs
    Cohen, Samuel N.
    Jiang, Deqing
    Sirignano, Justin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [23] Expression of Continuous State and Action Spaces for Q-Learning Using Neural Networks and CMAC
    Yamada, Kazuaki
    JOURNAL OF ROBOTICS AND MECHATRONICS, 2012, 24 (02) : 330 - 339
  • [24] On control of a base-excited inverted pendulum using neural networks
    Wu, Q
    Sepehri, N
    He, S
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2000, 337 (2-3): : 267 - 286
  • [25] Enhancing Nash Q-learning and Team Q-learning mechanisms by using bottlenecks
    Ghazanfari, Behzad
    Mozayani, Nasser
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (06) : 2771 - 2783
  • [26] Vague neural network based reinforcement learning control system for inverted pendulum
    Zhao, Yibiao
    Luo, Siwei
    Wang, Liang
    Ma, Aidong
    Fang, Rui
    NEURAL INFORMATION PROCESSING, PT 3, PROCEEDINGS, 2006, 4234 : 692 - 701
  • [27] Learning Stable Control for a Wheeled Inverted Pendulum with Fast Adaptive Neural Network
    Peng, Yuanzhe
    Ou, Yongsheng
    Feng, Wei
    2020 IEEE INTERNATIONAL CONFERENCE ON REAL-TIME COMPUTING AND ROBOTICS (IEEE-RCAR 2020), 2020, : 227 - 232
  • [28] Applications of Neural Networks for Control of a Double Inverted Pendulum
    Arbo, Mathias H.
    Raijmakers, Paul A.
    Mladenov, Valeri M.
    2014 12TH SYMPOSIUM ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING (NEUREL), 2014, : 89 - 92
  • [29] Deep Reinforcement Learning: From Q-Learning to Deep Q-Learning
    Tan, Fuxiao
    Yan, Pengfei
    Guan, Xinping
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV, 2017, 10637 : 475 - 483
  • [30] Cell Selection Using Distributed Q-Learning in Heterogeneous Networks
    Kudo, Toshihito
    Ohtsuki, Tomoaki
    2013 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2013,