Monodromy representations of braid groups in conformal field theory and yang-baxter equation

被引:0
|
作者
Kohno, T.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] INVOLUTIVE YANG-BAXTER GROUPS
    Cedo, Ferran
    Jespers, Eric
    Del Rio, Angel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (05) : 2541 - 2558
  • [22] THE YANG-BAXTER AND PENTAGON EQUATION
    VANDAELE, A
    VANKEER, S
    COMPOSITIO MATHEMATICA, 1994, 91 (02) : 201 - 221
  • [23] INTRODUCTION TO THE YANG-BAXTER EQUATION
    JIMBO, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (15): : 3759 - 3777
  • [24] Yang-Baxter σ-models, conformal twists, and noncommutative Yang-Mills theory
    Araujo, T.
    Bakhmatov, I.
    Colgain, E. O.
    Sakamoto, J.
    Sheikh-Jabbari, M. M.
    Yoshida, K.
    PHYSICAL REVIEW D, 2017, 95 (10)
  • [25] YANG-BAXTER EQUATION AND GENERALIZATION OF THE LIE FORMAL THEORY
    GUREVICH, DI
    DOKLADY AKADEMII NAUK SSSR, 1986, 288 (04): : 797 - 801
  • [26] DISTRIBUTIVE LAW, COMMUTATOR THEORY AND YANG-BAXTER EQUATION
    Bourn, Dominique
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2007, 8 (02): : 145 - 163
  • [27] Braces and the Yang-Baxter Equation
    Cedo, Ferran
    Jespers, Eric
    Okninski, Jan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 101 - 116
  • [28] GENERALIZED YANG-BAXTER EQUATION
    KASHAEV, RM
    STROGANOV, YG
    MODERN PHYSICS LETTERS A, 1993, 8 (24) : 2299 - 2309
  • [29] ON THE(COLORED)YANG-BAXTER EQUATION
    Hobby, David
    Iantovics, Barna Laszlo
    Nichita, Florin F.
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2010, 1 : 33 - 39
  • [30] Qubit representations of the braid groups from generalized Yang–Baxter matrices
    Jennifer F. Vasquez
    Zhenghan Wang
    Helen M. Wong
    Quantum Information Processing, 2016, 15 : 3035 - 3042