Note on fuzzy set theory in scanning

被引:0
|
作者
Bandemer, Hans [1 ]
Kraut, Andre [1 ]
机构
[1] Freiberg University of Mining and, Technology, Freiberg, Germany
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:110 / 115
相关论文
共 50 条
  • [31] Interval analysis and fuzzy set theory
    Moore, R
    Lodwick, W
    FUZZY SETS AND SYSTEMS, 2003, 135 (01) : 5 - 9
  • [32] Uninorms in L*-fuzzy set theory
    Deschrijver, G
    Kerre, EE
    FUZZY SETS AND SYSTEMS, 2004, 148 (02) : 243 - 262
  • [33] Postmodernism, cybernetics and fuzzy set theory
    Negoita, CV
    KYBERNETES, 2002, 31 (7-8) : 1043 - 1049
  • [34] A development of set theory in fuzzy logic
    Hájek, P
    Haniková, Z
    BEYOND TWO: THEORY AND APPLICATIONS OF MULTIPLE-VALUED LOGIC, 2003, 114 : 273 - 285
  • [35] APPLICATIONS OF FUZZY SET THEORY.
    Maiers, J.
    Sherif, Y.S.
    IEEE Transactions on Systems, Man and Cybernetics, 1985, SMC-15 (01): : 175 - 189
  • [36] Autopilot designed with fuzzy set theory
    Zirilli, A
    Tiano, A
    Roberts, GN
    Sutton, R
    CONTROL APPLICATIONS IN MARINE SYSTEMS 2001 (CAMS 2001), 2002, : 71 - 76
  • [37] The Archimedean assumption in fuzzy set theory
    Bilgic, T
    1996 BIENNIAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1996, : 299 - 303
  • [38] Extension principles for fuzzy set theory
    Gerla, G
    Scarpati, L
    INFORMATION SCIENCES, 1998, 106 (1-2) : 49 - 69
  • [39] Fuzzy set theory: a useful interlingua?
    Cornelis, C
    De Cock, M
    Botteldooren, D
    Kerre, E
    KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 1137 - 1141
  • [40] A set theory within fuzzy logic
    Hájek, P
    Haniková, Z
    31ST INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2001, : 319 - 323