Kinetic process analysis of volume thermonuclear ignition in high gain inertial confinement fusion

被引:0
|
作者
Li, Yunsheng [1 ]
Gao, Yaoming [1 ]
He, Xiantu [1 ]
Yu, Min [1 ]
机构
[1] Inst of Applied Physics and, Computation Mathematics, Beijing, China
关键词
Computer simulation - Fusion reactions - Ignition systems - Kinetic theory - Thermonuclear reactions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a good heat-resistance layer and inert layer, as the shell of DT were used to make volume ignition and volume burn (VIVB) reality. An unstable non-local thermodynamic equilibrium (non-LTE) state and transition from LTE ignition and burn to non-LTE ignition and burn was discussed, and in this way the driving energy can be lowered to 15MJ or so. The VIVB design was achieved and high gain fusion was obtained. A high gain and low gain model for VIVB were given by computational simulation.
引用
收藏
页码:325 / 333
相关论文
共 50 条
  • [21] Fast ignition of inertial confinement fusion targets
    S. Yu. Gus’kov
    Plasma Physics Reports, 2013, 39 : 1 - 50
  • [22] Thermonuclear ignition and the onset of propagating burn in inertial fusion implosions
    Christopherson, A. R.
    Betti, R.
    Lindl, J. D.
    PHYSICAL REVIEW E, 2019, 99 (02)
  • [23] Direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics:: charting the path to thermonuclear ignition
    McCrory, RL
    Regan, SP
    Loucks, SJ
    Meyerhofer, DD
    Skupsky, S
    Betti, R
    Boehly, TR
    Craxton, RS
    Collins, TJB
    Delettrez, JA
    Edgell, D
    Epstein, R
    Fletcher, KA
    Freeman, C
    Frenje, JA
    Glebov, VY
    Goncharov, VN
    Harding, DR
    Igumenshchev, I
    Keck, RL
    Kilkenny, JD
    Knauer, JP
    Li, CK
    Marciante, J
    Marozas, JA
    Marshall, FJ
    Maximov, AV
    McKenty, PW
    Myatt, J
    Padalino, S
    Petrasso, RD
    Radha, PB
    Sangster, TC
    Séguin, FH
    Seka, W
    Smalyuk, VA
    Soures, JM
    Stoeckl, C
    Yaakobi, B
    Zuegel, JD
    NUCLEAR FUSION, 2005, 45 (10) : S283 - S290
  • [24] Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion
    Zhao Ying-Kui
    Ouyang Bi-Yao
    Wen Wu
    Wang Min
    ACTA PHYSICA SINICA, 2015, 64 (04)
  • [25] HIGH-EFFICIENCY TARGETS FOR HIGH-GAIN INERTIAL CONFINEMENT FUSION
    GARDNER, JH
    BODNER, SE
    PHYSICS OF FLUIDS, 1986, 29 (08) : 2672 - 2678
  • [26] Inertial confinement fusion ignition achieved at the National Ignition Facility - an editorial
    Danson, C. N.
    Gizzi, L. A.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2023, 11
  • [27] Inertial confinement fusion ignition achieved at the National Ignition Facility–an editorial
    C.N.Danson
    L.A.Gizzi
    High Power Laser Science and Engineering, 2023, 11 (03) : 77 - 79
  • [28] Generalized Measurable Ignition Criterion for Inertial Confinement Fusion
    Chang, Py.
    Betti, R.
    Spears, B. K.
    Anderson, K. S.
    Edwards, J.
    Fatenejad, M.
    Lindl, J. D.
    McCrory, R. L.
    Nora, R.
    Shvarts, D.
    PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [29] Ignition energy scaling of inertial confinement fusion targets
    Basko, MM
    Johner, J
    NUCLEAR FUSION, 1998, 38 (12) : 1779 - 1788
  • [30] Machine learning on the ignition threshold for inertial confinement fusion
    Yang, Chen
    Zhang, Cunbo
    Gao, Congzhang
    Xu, Xuefeng
    Yu, Chengxin
    Wang, Shuaichuang
    Fan, Zhengfeng
    Liu, Jie
    PHYSICS OF PLASMAS, 2022, 29 (08)