Kinetic process analysis of volume thermonuclear ignition in high gain inertial confinement fusion

被引:0
|
作者
Li, Yunsheng [1 ]
Gao, Yaoming [1 ]
He, Xiantu [1 ]
Yu, Min [1 ]
机构
[1] Inst of Applied Physics and, Computation Mathematics, Beijing, China
关键词
Computer simulation - Fusion reactions - Ignition systems - Kinetic theory - Thermonuclear reactions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a good heat-resistance layer and inert layer, as the shell of DT were used to make volume ignition and volume burn (VIVB) reality. An unstable non-local thermodynamic equilibrium (non-LTE) state and transition from LTE ignition and burn to non-LTE ignition and burn was discussed, and in this way the driving energy can be lowered to 15MJ or so. The VIVB design was achieved and high gain fusion was obtained. A high gain and low gain model for VIVB were given by computational simulation.
引用
收藏
页码:325 / 333
相关论文
共 50 条
  • [1] Gain analysis of proton–lithium pellets at inertial confinement fusion with volume ignition
    S. S. Razavipour
    B. Malekynia
    Indian Journal of Physics, 2013, 87 : 1109 - 1112
  • [2] Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement
    Betti, R.
    Chang, P. Y.
    Spears, B. K.
    Anderson, K. S.
    Edwards, J.
    Fatenejad, M.
    Lindl, J. D.
    McCrory, R. L.
    Nora, R.
    Shvarts, D.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [3] Gain analysis of proton-lithium pellets at inertial confinement fusion with volume ignition
    Razavipour, S. S.
    Malekynia, B.
    INDIAN JOURNAL OF PHYSICS, 2013, 87 (11) : 1109 - 1112
  • [4] Energy scaling of inertial confinement fusion targets for ignition and high gain
    Levedahl, WK
    Lindl, JD
    NUCLEAR FUSION, 1997, 37 (02) : 165 - 173
  • [5] Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility
    Perkins, L. J.
    Betti, R.
    LaFortune, K. N.
    Williams, W. H.
    PHYSICAL REVIEW LETTERS, 2009, 103 (04)
  • [6] Analysis of the retrograde hydrogen boron fusion gains at inertial confinement fusion with volume ignition
    Scheffel, C
    Stening, RJ
    Hora, H
    Hopfl, R
    Martinez-Val, JM
    Eliezer, S
    Kasotakis, G
    Piera, M
    Sarris, E
    LASER AND PARTICLE BEAMS, 1997, 15 (04) : 565 - 574
  • [7] THERMONUCLEAR FUSION - INERTIAL CONFINEMENT IN TROUBLE
    BEARDSLEY, T
    NATURE, 1985, 315 (6022) : 706 - 706
  • [8] Inertial confinement fusion: steady progress towards ignition and high gain (summary talk)
    Basko, MM
    NUCLEAR FUSION, 2005, 45 (10) : S38 - S47
  • [9] Ignition condition and gain prediction for perturbed inertial confinement fusion targets
    Kishony, R
    Shvarts, D
    PHYSICS OF PLASMAS, 2001, 8 (11) : 4925 - 4936
  • [10] Diagnosing inertial confinement fusion ignition
    Moore, A. S.
    Divol, L.
    Bachmann, B.
    Bionta, R.
    Bradley, D.
    Casey, D. T.
    Celliers, P.
    Chen, H.
    Do, A.
    Dewald, E.
    Eckart, M.
    Fittinghoff, D.
    Frenje, J.
    Gatu-Johnson, M.
    Geppert-Kleinrath, H.
    Geppert-Kleinrath, V.
    Grim, G.
    Hahn, K.
    Hohenberger, M.
    Holder, J.
    Hurricane, O.
    Izumi, N.
    Kerr, S.
    Khan, S. F.
    Kilkenny, J. D.
    Kim, Y.
    Kozioziemski, B.
    Lemos, N.
    MacPhee, A. G.
    Michel, P.
    Millot, M.
    Meaney, K. D.
    Nagel, S.
    Pak, A.
    Ralph, J. E.
    Ross, J. S.
    Rubery, M. S.
    Schlossberg, D. J.
    Smalyuk, V.
    Swadling, G.
    Tommasini, R.
    Trosseille, C.
    Zylstra, A. B.
    Mackinnon, A.
    Moody, J. D.
    Landen, O. L.
    Town, R.
    NUCLEAR FUSION, 2024, 64 (10)