A nonlinear estimation algorithm and its optical implementation for target tracking in clutter environment

被引:0
|
作者
Chun, Joohwan [1 ]
Kailath, Thomas [2 ]
Son, Jung Yong [3 ]
机构
[1] Scientific Computing Laboratory, Dept. of Electrical Engineering, Korea Adv. Inst. Sci. and Technol., 373-1 Kusong-dong, Yusong-gu, Taejon 305-701, Korea, Republic of
[2] Information Systems Laboratory, Stanford University, Stanford, CA 94305, United States
[3] 3-D Imaging Media Center, Korea Inst. of Science and Technol., P.O. Box 131 Cheongryang, Seoul, Korea, Republic of
关键词
Algorithms - Clutter (information theory) - Computer simulation - Estimation - Infrared detectors - Kalman filtering - Optical devices - Optimization - Probability density function;
D O I
10.1143/jjap.42.466
中图分类号
学科分类号
摘要
The two-dimensional tracking problem in a clutter environment is solved in the discrete-time Bayes optimal (nonlinear, and non-Gaussian) estimation framework. The proposed method recursively finds the probability density functions of the target position and velocity. With our approach, the nonlinear estimation problem is converted into simpler linear convolution operations that can be implemented with optical devices efficiently. We present a possible optical implementation architecture, and its functionality is verified through computer simulation.
引用
收藏
页码:466 / 470
相关论文
共 50 条
  • [41] Sequential target tracking based on local trajectory parameters estimation in Rayleigh clutter
    Voyki, Vitalii
    Prokopenko, Igor
    Prokopenko, Kostiantyn
    2014 15TH INTERNATIONAL RADAR SYMPOSIUM (IRS), 2014,
  • [42] Cooperative Estimation for Coordinated Target Tracking in a Cluttered Environment
    Benjamin I. Triplett
    Daniel J. Klein
    Kristi A. Morgansen
    Mobile Networks and Applications, 2009, 14 : 336 - 349
  • [43] Cooperative Estimation for Coordinated Target Tracking in a Cluttered Environment
    Triplett, Benjamin I.
    Klein, Daniel J.
    Morgansen, Kristi A.
    MOBILE NETWORKS & APPLICATIONS, 2009, 14 (03): : 336 - 349
  • [44] Nonlinear Estimation Techniques Applied on Target Tracking Problems
    Gadsden, Andrew
    Habibi, Saeid
    Dunne, Darcy
    Kirubarajan, T.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2012, 134 (05):
  • [45] Improved IMM Algorithm for Nonlinear Maneuvering Target Tracking
    Gao, Liang
    Xing, Jianping
    Ma, Zhenliang
    Sha, Junchen
    Meng, Xiangzhan
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 4117 - 4123
  • [46] Backward Input Estimation Algorithm for Tracking Maneuvering Target
    Ahari, Amin A.
    Karsaz, Ali
    2016 24TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2016, : 745 - 750
  • [47] A new maneuvering target tracking algorithm with input estimation
    Zhou, K
    Wang, XQ
    Tomizuka, M
    Zhang, WB
    Chan, CY
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 166 - 171
  • [48] Efficient Moving Target Tracking algorithm: Design and implementation of the Sand-table tracking algorithm
    Li, Jiaqi
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1032 - 1039
  • [49] Adaptive Estimation of Spatial Clutter Measurement Density Using Clutter Measurement Probability for Enhanced Multi-Target Tracking
    Park, Seung Hyo
    Chong, Sa Yong
    Kim, Hyung June
    Song, Taek Lyul
    SENSORS, 2020, 20 (01)
  • [50] Spatial Clutter Measurement Density Estimation with the Clutter Probability for Improving Multi-target Tracking Performance in Cluttered Environments
    Park, Seung Hyo
    Xie, Yifan
    Han, Du Hee
    Song, Taek Lyul
    2018 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2018, : 90 - 95