Optimal edge based finite difference solution to the vector Helmholtz equation in two dimensions

被引:0
|
作者
Ohio State Univ, Columbus, United States [1 ]
机构
来源
IEEE Trans Magn | / 3卷 / 1462-1465期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A direct high-order finite difference solution to the Helmholtz equation in ocean acoustics
    Liu Wei
    Cheng Xinghua
    Xiao Wenbin
    Wang Yongxian
    Zhang Lilun
    OCEANS 2018 MTS/IEEE CHARLESTON, 2018,
  • [22] An Optimal Fourth-Order Finite Difference Scheme for the Helmholtz Equation Based on the Technique of Matched Interface Boundary
    Cheng, Dongsheng
    Chen, Jianjun
    Long, Guangqing
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [23] A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution
    Babuska, I
    Ihlenburg, F
    Paik, ET
    Sauter, SA
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 128 (3-4) : 325 - 359
  • [24] CONVERGENCE OF FINITE DIFFERENCE METHODS FOR THE WAVE EQUATION IN TWO SPACE DIMENSIONS
    Wang, Siyang
    Nissen, Anna
    Kreiss, Gunilla
    MATHEMATICS OF COMPUTATION, 2018, 87 (314) : 2737 - 2763
  • [25] An implicit finite-difference operator for the Helmholtz equation
    Chu, Chunlei
    Stoffa, Paul L.
    GEOPHYSICS, 2012, 77 (04) : T97 - T107
  • [26] Complete centered finite difference method for Helmholtz equation
    Alvarez, Gustavo b.
    Nunes, Helder f.
    Menezes, Welton a.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2024, 96 (04):
  • [27] Numerical solution of a generalized boundary value problem for the modified Helmholtz equation in two dimensions
    Ivanyshyn Yaman, Olha
    Özdemir, Gazi
    Mathematics and Computers in Simulation, 2021, 190 : 181 - 191
  • [28] Numerical solution of a generalized boundary value problem for the modified Helmholtz equation in two dimensions
    Yaman, Olha Ivanyshyn
    Ozdemir, Gazi
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 181 - 191
  • [29] An optimized implicit finite-difference scheme for the two-dimensional Helmholtz equation
    Liu, Zhao-lun
    Song, Peng
    Li, Jin-shan
    Li, Jing
    Zhang, Xiao-bo
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 202 (03) : 1805 - 1826
  • [30] An Optimal Sixth-order Finite Difference Scheme for the Helmholtz Equation in One-dimension
    LIU XU
    WANG HAI-NA
    HU JING
    Communications in Mathematical Research, 2019, 35 (03) : 264 - 272