Optimal edge based finite difference solution to the vector Helmholtz equation in two dimensions

被引:0
|
作者
Ohio State Univ, Columbus, United States [1 ]
机构
来源
IEEE Trans Magn | / 3卷 / 1462-1465期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] An optimal edge based finite difference solution to the vector Helmholtz equation in two dimensions
    Rao, KR
    Lee, R
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1462 - 1465
  • [2] Locally enriched finite elements for the Helmholtz equation in two dimensions
    Laghrouche, O.
    Mohamed, M. S.
    COMPUTERS & STRUCTURES, 2010, 88 (23-24) : 1469 - 1473
  • [3] Numerical Solution of Helmholtz Equation by the Modified Hopfield Finite Difference Techniques
    Dehghan, Mehdi
    Nourian, Mojtaba
    Menhaj, Mohammad B.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (03) : 637 - 656
  • [4] Optimization of a Finite-Difference Scheme for Numerical Solution of the Helmholtz Equation
    V. I. Kostin
    S. A. Solov’ev
    Computational Mathematics and Mathematical Physics, 2020, 60 : 641 - 650
  • [5] Optimization of a Finite-Difference Scheme for Numerical Solution of the Helmholtz Equation
    Kostin, V. I.
    Solov'ev, S. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (04) : 641 - 650
  • [7] A smoothed finite element method for exterior Helmholtz equation in two dimensions
    Chai, Yingbin
    Gong, Zhixiong
    Li, Wei
    Li, Tianyun
    Zhang, Qifan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2017, 84 : 237 - 252
  • [8] An optimal 25-point finite difference scheme for the Helmholtz equation with PML
    Chen, Zhongying
    Wu, Tingting
    Yang, Hongqi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) : 1240 - 1258
  • [9] An optimal compact sixth-order finite difference scheme for the Helmholtz equation
    Wu, Tingting
    Xu, Ruimin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (07) : 2520 - 2537
  • [10] A Robust Optimal Finite Difference Scheme for the Three-Dimensional Helmholtz Equation
    Cheng, Dongsheng
    Chen, Baowen
    Chen, Xiangling
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019