NEW SET OF SIXTH-ORDER VENTED-BOX LOUDSPEAKER SYSTEM ALIGNMENTS.

被引:0
|
作者
Keele Jr., Don B.
机构
来源
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
LOUDSPEAKERS
引用
收藏
页码:354 / 360
相关论文
共 50 条
  • [31] Asymptotic behavior of a sixth-order Cahn-Hilliard system
    Miranville, Alain
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (01): : 141 - 154
  • [32] New variants of Jarratt's method with sixth-order convergence
    Ren, Hongmin
    Wu, Qingbiao
    Bi, Weihong
    NUMERICAL ALGORITHMS, 2009, 52 (04) : 585 - 603
  • [33] New Sixth-Order Compact Schemes for Poisson/Helmholtz Equations
    Pan, Kejia
    Fu, Kang
    Li, Jin
    Hu, Hongling
    Li, Zhilin
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2023, 16 (02): : 393 - 409
  • [34] A new sixth-order algorithm for general second order ordinary differential equations
    Awoyemi, DO
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 77 (01) : 117 - 124
  • [35] Existence of positive solution for a sixth-order differential system with variable parameters
    Agarwal R.P.
    Kovacs B.
    O'Regan D.
    Journal of Applied Mathematics and Computing, 2014, 44 (1-2) : 437 - 454
  • [36] A New Sixth-Order WENO Scheme for Solving Hyperbolic Conservation Laws
    Kunlei Zhao
    Yulong Du
    Li Yuan
    Communications on Applied Mathematics and Computation, 2023, 5 : 3 - 30
  • [37] Bilinear form and new interaction solutions for the sixth-order Ramani equation
    He, Bin
    Meng, Qing
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 411 - 418
  • [38] A new iterative method with sixth-order convergence for solving nonlinear equations
    Li, Han
    AUTOMATIC MANUFACTURING SYSTEMS II, PTS 1 AND 2, 2012, 542-543 : 1019 - 1022
  • [39] A New Sixth-Order WENO Scheme for Solving Hyperbolic Conservation Laws
    Zhao, Kunlei
    Du, Yulong
    Li Yuan
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2023, 5 (01) : 3 - 30
  • [40] A new adaptively central-upwind sixth-order WENO scheme
    Huang, Cong
    Chen, Li Li
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 357 : 1 - 15