Symbolic dynamics of the one-dimensional biquadratic map with two parameters

被引:0
|
作者
Xie, Fageng [1 ]
机构
[1] Beijing Normal Univ, Beijing, China
来源
Wuli Xuebao/Acta Physica Sinica | 1994年 / 43卷 / 02期
关键词
Symbolic dynamics - Topological chaos - Topological entropy;
D O I
暂无
中图分类号
学科分类号
摘要
(Edited Abstract)
引用
收藏
页码:191 / 197
相关论文
共 50 条
  • [31] One-dimensional measles dynamics
    Al-Showaikh, FNM
    Twizell, EH
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 152 (01) : 169 - 194
  • [32] Rigidity in one-dimensional dynamics
    Khanin, KM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (18-19): : 2311 - 2324
  • [33] Dynamics of one-dimensional and two-dimensional helium adsorbed on carbon nanotubes
    Diallo, S. O.
    Fak, B.
    Adams, M. A.
    Vilches, O. E.
    Johnson, M. R.
    Schober, H.
    Glyde, H. R.
    EPL, 2009, 88 (05)
  • [34] GENERATION OF SYMBOLIC LAYOUT IN ONE-DIMENSIONAL LOGIC ARRAY
    HONG, YS
    PARK, KH
    KIM, M
    COMPUTER-AIDED DESIGN, 1988, 20 (08) : 484 - 496
  • [35] Effect of noise on chaos in a one-dimensional map
    Yoshimoto, M
    Kurosawa, S
    Nagashima, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (06) : 1924 - 1929
  • [36] A new type of one-dimensional discrete map
    A. A. Koronovskii
    Technical Physics Letters, 1998, 24 : 665 - 667
  • [37] Rhythmic hopping in a one-dimensional crisis map
    Seko, C
    Takatsuka, K
    PHYSICAL REVIEW E, 1996, 54 (01): : 956 - 959
  • [38] STUDY OF A ONE-DIMENSIONAL MAP WITH MULTIPLE BASINS
    TESTA, J
    HELD, GA
    PHYSICAL REVIEW A, 1983, 28 (05): : 3085 - 3089
  • [39] The one-dimensional two-fluid model with momentum flux parameters
    Song, JH
    Ishii, M
    NUCLEAR ENGINEERING AND DESIGN, 2001, 205 (1-2) : 145 - 158
  • [40] ANALYSIS OF FLOW HYSTERESIS BY A ONE-DIMENSIONAL MAP
    FRASER, S
    KAPRAL, R
    PHYSICAL REVIEW A, 1982, 25 (06): : 3223 - 3233