A chaotic crisis between chaotic saddle and attractor in forced Duffing oscillators

被引:14
|
作者
Hong, Ling [1 ]
Xu, Jianxue [1 ]
机构
[1] Department of Engineering Mechanics, Sch. of Civil Engineering/Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
关键词
Cell mapping digraph method - Chaotic saddle;
D O I
10.1016/S1007-5704(02)00107-7
中图分类号
学科分类号
摘要
引用
收藏
页码:313 / 329
相关论文
共 50 条
  • [31] Extraction of periodic signals in chaotic secure communication using Duffing oscillators
    王云才
    赵清春
    王安帮
    ChinesePhysicsB, 2008, 17 (07) : 2373 - 2376
  • [32] Extraction of periodic signals in chaotic secure communication using Duffing oscillators
    Wang Yun-Cai
    Zhao Qing-Chun
    Wang An-Bang
    CHINESE PHYSICS B, 2008, 17 (07) : 2373 - 2376
  • [33] Chaotic attractor of the normal form map for grazing bifurcations of impact oscillators
    Miao, Pengcheng
    Li, Denghui
    Yue, Yuan
    Xie, Jianhua
    Grebogi, Celso
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 398 : 164 - 170
  • [34] Chaotic Motion in Forced Duffing System Subject to Linear and Nonlinear Damping
    Chang, Tai-Ping
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [35] Crisis of the chaotic attractor of a climate model: a transfer operator approach
    Tantet, Alexis
    Lucarini, Valerio
    Lunkeit, Frank
    Dijkstra, Henk A.
    NONLINEARITY, 2018, 31 (05) : 2221 - 2251
  • [36] A continuation algorithm for discovering new chaotic motions forced Duffing systems
    VanDooren, R
    Janssen, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 66 (1-2) : 527 - 541
  • [37] Chaotic attractor of the image
    Yu, Wanbo
    Yu, Shuo
    INFORMATION TECHNOLOGY, 2015, : 161 - 164
  • [38] Chaotic period-doubling and OGY control for the forced Duffing equation
    Akhmet, M. U.
    Fen, M. O.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1929 - 1946
  • [39] The saddle case of Rayleigh–Duffing oscillators
    Hebai Chen
    Deqing Huang
    Yupei Jian
    Nonlinear Dynamics, 2018, 93 : 2283 - 2300
  • [40] A novel chaotic attractor
    Liu, Chongxin
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1037 - 1045