STABILITY OF STATIONARY MOTION OF MECHANICAL SYSTEMS IN A RESISTIVE MEDIUM.

被引:0
|
作者
Tereki, I.
机构
关键词
CHETAEV METHOD;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of the stability of stationary motion of holonomic mechanical systems with cyclic coordinates is often solved by the Chetaev method which consists of constructing a positive-definite first integral in the form of a combination of the energy integral and integrals corresponding to the cyclic coordinates. It is shown that this method can be applied to the stationary motion of mechanical systems with quasicyclical coordinates when the generalized forces consist of potential and dissipative components.
引用
收藏
页码:13 / 15
相关论文
共 50 条
  • [21] Stationary set and stability: A case study for mechanical systems with discontinuities
    Zheng Kai
    Shen Tielong
    Yao Yu
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 429 - +
  • [22] ON THE STABILITY OF THE LINING OF A HORIZONTAL OPENING IN A VISCOELASTIC AGEING MEDIUM.
    Arutyunyan, N.Kh.
    Drozdov, A.D.
    Kolmanovskii, V.B.
    1600, (49):
  • [23] Translational motion of a chain of bodies in a resistive medium
    Chernous'ko, F. L.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2017, 81 (04): : 256 - 269
  • [24] Optimal motion of a multilink system in a resistive medium
    F. L. Chernous’ko
    Proceedings of the Steklov Institute of Mathematics, 2012, 276 : 63 - 79
  • [25] The undulatory motion of a chain of particles in a resistive medium
    Bolotnik, N.
    Pivovarov, M.
    Zeidis, I.
    Zimmermann, K.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (04): : 259 - 275
  • [26] Optimal motion of a multilink system in a resistive medium
    Chernous'ko, F. L.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (02): : 240 - 255
  • [27] Optimal Motion of a Multilink System in a Resistive Medium
    Chernous'ko, F. L.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 276 : S63 - S79
  • [28] THERMAL STABILITY OF BINARY GAS MIXTURES IN A POROUS MEDIUM.
    Ka Lawson, M.L.
    Yang, Wen-Jei
    American Society of Mechanical Engineers (Paper), 1975, (75 -HT-HH):
  • [29] Body motion in a resistive medium at temperature T
    Molina, MI
    REVISTA MEXICANA DE FISICA, 2002, 48 (02) : 132 - 134
  • [30] LARGE AMPLITUDE STATIONARY WAVES IN AN EXCITABLE LATERAL-INHIBITORY MEDIUM.
    Ermentrout, G.B.
    Hastings, S.P.
    Troy, W.C.
    1600, (44):