DEVELOPMENT STATUS OF LITHIUM-SILICON-IRON SULFIDE LOAD-LEVELING BATTERIES.

被引:0
|
作者
McCoy, L.R.
Heredy, L.A.
机构
来源
| 1976年 / 1 SAE卷
关键词
IRON COMPOUNDS - Applications - LITHIUM AND ALLOYS - Applications - SILICON AND ALLOYS - Applications - SULFUR COMPOUNDS - Applications;
D O I
暂无
中图分类号
学科分类号
摘要
These batteries use a molten LiCl-KCl electrolyte, and are operated at a temperature of 400 degree C or higher. The lithium-silicon alloy, Li//5Si, is used as the active material in the negative electrodes. Positive electrodes contain the iron sulfides, FeS, FeS//2, or their mixture. Electrode development tasks are concerned with minimizing the weight and cost of supporting structures, and optimizing electrode performance. Porous ceramic separators, based upon rigid structural materials are being developed. Cell development is being conducted through scale-up stages involving increasing electrode area and numbers of parallel-connected electrodes to reach a full-size modular cell.
引用
收藏
页码:485 / 490
相关论文
共 50 条
  • [31] Life performance and failure mode analysis of improved, large VRLA batteries, used in a 20kW load-leveling installation
    Yamaguchi, Y
    Hirakawa, K
    Hojo, E
    Nakayama, Y
    INTELEC 2001: TWENTY-THIRD INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE, 2001, (484): : 369 - 375
  • [32] Lithium silicon sulfide as an anode material in all-solid-state lithium batteries
    Hang, Bui Thi
    Ohnishi, Tsuyoshi
    Osada, Minoru
    Xu, Xiaoxiong
    Takada, Kazunori
    Sasaki, Takayoshi
    JOURNAL OF POWER SOURCES, 2010, 195 (10) : 3323 - 3327
  • [33] MAGNESIA POROUS PARTICLE SEPARATORS FOR LITHIUM ALUMINUM IRON SULFIDE BATTERIES
    SHIMIZU, Y
    TERASAKI, M
    KASHIHARA, S
    JOURNAL OF POWER SOURCES, 1984, 13 (03) : 235 - 244
  • [34] Development of a long-life lithium-ion battery for load leveling
    Majima, Masatoshi
    Koyama, Keiji
    Inazawa, Shinji
    Yagasaki, Eriko
    SEI Technical Review, 2002, (53): : 112 - 115
  • [35] Lithium iron phosphate batteries recycling: An assessment of current status
    Forte, Federica
    Pietrantonio, Massimiliana
    Pucciarmati, Stefano
    Puzone, Massimo
    Fontana, Danilo
    CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2021, 51 (19) : 2232 - 2259
  • [36] Development of lithium iron oxide cathode materials for lithium secondary batteries
    Lee, YS
    Cho, SJ
    Sun, YK
    Kobayakawa, K
    Sato, Y
    ELECTROCHEMISTRY, 2005, 73 (10) : 874 - 882
  • [37] DEVELOPMENT OF ELECTRODE SEPARATORS FOR LITHIUM-ALUMINUM-METAL SULFIDE BATTERIES
    SWAROOP, RB
    BOQUIST, CW
    BATTLES, JE
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (08) : C337 - C337
  • [38] Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects
    Wang, Mengmeng
    Liu, Kang
    Dutta, Shanta
    Alessi, Daniel S.
    Rinklebe, Joerg
    Ok, Yong Sik
    Tsang, Daniel C. W.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 163
  • [39] RECENT ADVANCES IN DEVELOPMENT OF SODIUM-SULFUR BATTERIES FOR LOAD LEVELING AND MOTIVE POWER APPLICATIONS
    JONES, IW
    ELECTROCHIMICA ACTA, 1977, 22 (07) : 681 - 688
  • [40] SCALE-UP AND TESTING OF LITHIUM-SILICON IRON SULFIDE CELLS
    HALL, JC
    SAUNDERS, RC
    HEREDY, LA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1976, 172 (SEP3): : 104 - 104