On the qualitative theory of a reaction-diffusion system on bounded domains

被引:0
|
作者
Okoya, S. S.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Distance of attractors of reaction-diffusion equations in thin domains
    Arrieta, Jose M.
    Santamaria, Esperanza
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (09) : 5459 - 5506
  • [42] Propagation speed for reaction-diffusion equations in general domains
    Berestycki, H
    Hamel, F
    Nadirashvili, N
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (03) : 163 - 168
  • [43] Numerical simulation of reaction-diffusion equations on spherical domains
    Amdjadi, Faridon
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (08) : 1592 - 1595
  • [44] PATTERN FORMATION IN REACTION-DIFFUSION SYSTEMS ON GROWNING DOMAINS
    Gonzalez, Libardo A.
    Vanegas, Juan C.
    Garzon, Diego A.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2009, 25 (02): : 145 - 161
  • [45] On the Kneser property for reaction-diffusion systems on unbounded domains
    Morillas, Francisco
    Valero, Jose
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) : 3029 - 3040
  • [46] Wave solutions to reaction-diffusion systems in perforated domains
    Heinze, S
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (03): : 661 - 676
  • [47] The diffusion identification in a SIS reaction-diffusion system
    Coronel, Anibal
    Huancas, Fernando
    Hess, Ian
    Tello, Alex
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 562 - 581
  • [48] ZERO-DIFFUSION DOMAINS IN REACTION-DIFFUSION MORPHOGENETIC AND EPIDEMIOLOGIC PROCESSES
    Demongeot, Jacques
    Gaudart, Jean
    Lontos, Athanasios
    Mintsa, Julie
    Promayon, Emmanuel
    Rachdi, Mustapha
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (02):
  • [50] A reaction-diffusion system with fast reversible reaction
    Bothe, D
    Hilhorst, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (01) : 125 - 135