Biased chaotic diffusion

被引:0
|
作者
Tel Aviv Univ, Tel Aviv, Israel [1 ]
机构
来源
Phys A Stat Theor Phys | / 1-4卷 / 156-161期
关键词
Chaos theory - Functions - Iterative methods - Mathematical models - Nonlinear systems;
D O I
暂无
中图分类号
学科分类号
摘要
Deterministic diffusion generated by a broad range of non-linear systems has drawn much interest. One of the open questions that pertain to these diffusional processes is the response of diffusion generating systems to a homogeneous bias. This issue is addressed in the present study for the case of one-dimensional maps. In particular, the influence of a weak uniform bias on chaotic diffusion generated by iterated one-dimensional maps is clarified.
引用
收藏
相关论文
共 50 条
  • [21] UNIFORMLY BIASED DIFFUSION IN A RANDOM MEDIUM
    ROUX, S
    GUYON, E
    EUROPHYSICS LETTERS, 1987, 4 (02): : 175 - 182
  • [22] New simulations on old biased diffusion
    Stauffer, D
    PHYSICA A, 1999, 266 (1-4): : 35 - 41
  • [23] Protein folding as biased conformational diffusion
    Sullivan, DC
    Kuntz, ID
    JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (12): : 3255 - 3262
  • [24] SCALE-INVARIANCE IN BIASED DIFFUSION
    CHEUNG, KW
    YU, KW
    HUI, PM
    PHYSICAL REVIEW B, 1992, 45 (01): : 456 - 459
  • [25] Biased diffusion in anisotropic disordered systems
    Bustingorry, S
    Reyes, ER
    Cáceres, MO
    PHYSICAL REVIEW E, 2000, 62 (06): : 7664 - 7669
  • [26] BIASED DIFFUSION ON RANDOM STRUCTURES.
    Bunde, Armin
    Havlin, Shlomo
    Philosophical Magazine B: Physics of Condensed Matter; Electronic, Optical and Magnetic Properties, 1987, 56 (06): : 821 - 831
  • [27] Chaotic diffusion in the solar system
    Laskar, J.
    ICARUS, 2008, 196 (01) : 1 - 15
  • [28] Hyperbolic diffusion in chaotic systems
    Borys, P.
    Grzywna, Z. J.
    Luczka, J.
    EUROPEAN PHYSICAL JOURNAL B, 2011, 83 (02): : 223 - 233
  • [29] Phase diffusion in a chaotic pendulum
    Blackburn, JA
    GronbechJensen, N
    PHYSICAL REVIEW E, 1996, 53 (04): : 3068 - 3072
  • [30] INTERACTION OF CHAOTIC ADVECTION AND DIFFUSION
    JONES, SW
    CHAOS SOLITONS & FRACTALS, 1994, 4 (06) : 929 - 940