On computing logarithms on elliptic curves

被引:0
|
作者
Semaev, I.A.
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] A parallel architecture for computing scalar multiplication on Hessian elliptic curves
    Saqib, NA
    Rodríguez-Henriquez, F
    Díaz-Pérez, A
    ITCC 2004: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: CODING AND COMPUTING, VOL 2, PROCEEDINGS, 2004, : 493 - 497
  • [32] Computing a Sequence of 2-Isogenies on Supersingular Elliptic Curves
    Yoshida, Reo
    Takashima, Katsuyuki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (01) : 158 - 165
  • [33] Computing isogenies between supersingular elliptic curves over Fp
    Delfs, Christina
    Galbraith, Steven D.
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 78 (02) : 425 - 440
  • [34] A Quantum Algorithm for Computing Isogenies between Supersingular Elliptic Curves
    Biasse, Jean-Francois
    Jao, David
    Sankar, Anirudh
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2014, 2014, 8885 : 428 - 442
  • [35] Reducing certain elliptic curve discrete logarithms to logarithms in a finite field
    Shim, K
    INFORMATION SECURITY AND PRIVACY, PROCEEDINGS, 2001, 2119 : 514 - 520
  • [36] LINEAR-FORMS IN ELLIPTIC LOGARITHMS
    YU, KR
    JOURNAL OF NUMBER THEORY, 1985, 20 (01) : 1 - 69
  • [37] COMPUTING DISCRETE LOGARITHMS IN AN INTERVAL
    Galbraith, Steven D.
    Pollard, John M.
    Ruprai, Raminder S.
    MATHEMATICS OF COMPUTATION, 2013, 82 (282) : 1181 - 1195
  • [38] Lifting and Elliptic Curve Discrete Logarithms
    Silverman, Joseph H.
    SELECTED AREAS IN CRYPTOGRAPHY, 2009, 5381 : 82 - 102
  • [39] COMPUTING ELLIPTIC CURVE DISCRETE LOGARITHMS WITH IMPROVED BABY-STEP GIANT-STEP ALGORITHM
    Galbraith, Steven D.
    Wang, Ping
    Zhang, Fangguo
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (03) : 453 - 469
  • [40] Computing a Basis of the Set of Isogenies Between Two Supersingular Elliptic Curves
    Katayama, Akira
    Yasuda, Masaya
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2024, 2024, 14938 : 178 - 192