Optimized perturbation method for the propagation in the anharmonic oscillator potential

被引:0
|
作者
Institute of Physics, Bialystok University, Lipowa 41, 15-424 Bialystok, Poland [1 ]
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Perturbation WKB approximation: Quartic anharmonic oscillator
    Lu, SC
    Chen, Y
    Sun, F
    Wang, B
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1998, 113 (03): : 375 - 384
  • [22] New perturbation theory for the nonstationary anharmonic oscillator
    Bogdanov, AV
    Gevorkyan, AS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21): : 7413 - 7425
  • [23] VARIATIONAL PERTURBATION-THEORY - ANHARMONIC-OSCILLATOR
    SISSAKIAN, AN
    SOLOVTSOV, IL
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 54 (02): : 263 - 271
  • [24] SUMMATION METHODS FOR PERTURBATION SERIES OF GENERALIZED ANHARMONIC OSCILLATOR
    GRAFFI, S
    GRECCHI, V
    TURCHETT.G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B, 1971, B 4 (02): : 313 - &
  • [25] Perfect lattice perturbation theory: A study of the anharmonic oscillator
    Bietenholz, W
    Struckmann, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (04): : 531 - 553
  • [26] SCALING PROPERTY OF VARIATIONAL PERTURBATION EXPANSION FOR A GENERAL ANHARMONIC-OSCILLATOR WITH X(P)-POTENTIAL
    JANKE, W
    KLEINERT, H
    PHYSICS LETTERS A, 1995, 199 (5-6) : 287 - 290
  • [27] PERTURBATION-THEORY AND HYPERVIRIAL THEOREMS FOR THE ANHARMONIC-OSCILLATOR
    DMITRIEVA, IK
    PLINDOV, GI
    PHYSICS LETTERS A, 1980, 79 (01) : 47 - 50
  • [28] Transformation of the asymptotic perturbation expansion for the anharmonic oscillator into a convergent expansion
    Ivanov, IA
    PHYSICS LETTERS A, 2004, 322 (3-4) : 194 - 204
  • [29] PERTURBATION-THEORY OF THE ANHARMONIC-OSCILLATOR AT LARGE ORDERS
    AUBERSON, G
    MENNESSIER, G
    MAHOUX, G
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 48 (01): : 1 - 23
  • [30] Multiple-scale perturbation theory of sextic anharmonic oscillator
    Cheng, YF
    Dai, TQ
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2006, 30 (06): : 513 - 516