Learning-based ventricle detection from cardiac MR and CT images

被引:0
|
作者
Michigan State Univ, East Lansing, United States [1 ]
机构
来源
IEEE Trans Med Imaging | / 4卷 / 378-391期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] An improved deep learning-based optimal object detection system from images
    Yadav, Satya Prakash
    Jindal, Muskan
    Rani, Preeti
    de Albuquerque, Victor Hugo C.
    Nascimento, Caio dos Santos
    Kumar, Manoj
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (10) : 30045 - 30072
  • [42] Deep Learning-Based Detection of Malformed Optic Chiasms From MRI Images
    Puzniak, Robert J.
    Prabhakaran, Gokulraj T.
    Hoffmann, Michael B.
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [43] Deep Learning-Based Detection of Penetration from Weld Pool Reflection Images
    Li, C.
    Wang, Q.
    Jiao, W.
    Johnson, M.
    Zhang, Y. M.
    WELDING JOURNAL, 2020, 99 (09) : 239S - 245S
  • [44] Deep Learning Based Nodule Detection from Pulmonary CT Images
    Hang, Zheng
    Xu, Hongshan
    Sun, Meijun
    2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL. 1, 2017, : 370 - 373
  • [45] Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method
    Chu, Chengwen
    Belavy, Daniel L.
    Armbrecht, Gabriele
    Bansmann, Martin
    Felsenberg, Dieter
    Zheng, Guoyan
    PLOS ONE, 2015, 10 (11):
  • [46] Performance of a deep learning-based identification system for esophageal cancer from CT images
    Takeuchi, Masashi
    Seto, Takumi
    Hashimoto, Masahiro
    Ichihara, Nao
    Morimoto, Yosuke
    Kawakubo, Hirofumi
    Suzuki, Tatsuya
    Jinzaki, Masahiro
    Kitagawa, Yuko
    Miyata, Hiroaki
    Sakakibara, Yasubumi
    ESOPHAGUS, 2021, 18 (03) : 612 - 620
  • [47] Performance of a deep learning-based identification system for esophageal cancer from CT images
    Masashi Takeuchi
    Takumi Seto
    Masahiro Hashimoto
    Nao Ichihara
    Yosuke Morimoto
    Hirofumi Kawakubo
    Tatsuya Suzuki
    Masahiro Jinzaki
    Yuko Kitagawa
    Hiroaki Miyata
    Yasubumi Sakakibara
    Esophagus, 2021, 18 : 612 - 620
  • [48] Deep learning-based aggressive progression prediction from CT images of hepatocellular carcinoma
    Pan, Meiqing
    Tang, Zhenchao
    Fu, Sirui
    Mu, Wei
    Zhang, Jie
    Li, Xiaoqun
    Zhang, Hui
    Lu, Ligong
    Tian, Jie
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [49] A variational approach for the segmentation of the left ventricle in MR cardiac images
    Paragios, N
    IEEE WORKSHOP ON VARIATIONAL AND LEVEL SET METHODS IN COMPUTER VISION, PROCEEDINGS, 2001, : 153 - 160
  • [50] Automatic cardiac ventricle segmentation in MR images: a validation study
    Damien Grosgeorge
    Caroline Petitjean
    Jérôme Caudron
    Jeannette Fares
    Jean-Nicolas Dacher
    International Journal of Computer Assisted Radiology and Surgery, 2011, 6 : 573 - 581