Collocation-type method for linear quadratic optimal control problems

被引:0
|
作者
Univ of South Carolina at, Spartanburg, Spartanburg, United States [1 ]
机构
来源
Optim Control Appl Methods | / 3卷 / 227-235期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
12
引用
收藏
相关论文
共 50 条
  • [41] Stochastic Linear Quadratic Optimal Control Problems in Infinite Horizon
    Jingrui Sun
    Jiongmin Yong
    Applied Mathematics & Optimization, 2018, 78 : 145 - 183
  • [42] Approximated Solutions of Linear Quadratic Fractional Optimal Control Problems
    Zeid, S. Soradi
    Yousefi, M.
    Yousefi, M.
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2016, 12 (02) : 83 - 94
  • [43] Optimal measurement scheduling in linear quadratic gaussian control problems
    Skafidas, E
    Nerode, A
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 1996, : 1225 - 1229
  • [44] A SIMPLE COLLOCATION-TYPE APPROACH TO NUMERICAL STOCHASTIC HOMOGENIZATION
    Hauck, Moritz
    Mohr, Hannah
    Peterseim, Daniel
    MULTISCALE MODELING & SIMULATION, 2025, 23 (01): : 374 - 396
  • [45] Indefinite mean-field type linear-quadratic stochastic optimal control problems
    Li, Na
    Li, Xun
    Yu, Zhiyong
    AUTOMATICA, 2020, 122
  • [46] Stochastic linear quadratic optimal control problems with expectation-type linear equality constraints on the terminal states
    Zhang, Haisen
    Zhang, Xianfeng
    SYSTEMS & CONTROL LETTERS, 2023, 177
  • [48] A Collocation Method for Quadratic Control Problems Governed by Ordinary Elliptic Differential Equations
    Alt, W.
    Braeutigam, N.
    Karolewski, D.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 745 - +
  • [49] Quadratic/linear rational spline collocation for linear boundary value problems
    Ideon, Erge
    Oja, Peeter
    APPLIED NUMERICAL MATHEMATICS, 2018, 125 : 143 - 158
  • [50] ON THE TURNPIKE PROPERTY AND THE RECEDING-HORIZON METHOD FOR LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEMS
    Breiten, Tobias
    Pfeiffer, Laurent
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (02) : 1077 - 1102