Analog CMOS Approximate Identity Neural Network with stochastic learning and multilevel weight storage

被引:0
|
作者
Univ of Ancona, Ancona, Italy [1 ]
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Analog VLSI neural network with digital perturbative learning
    Koosh, VF
    Goodman, RM
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2002, 49 (05): : 359 - 368
  • [32] Implementation of an analog self-learning neural network
    Lu, C
    Shi, BX
    Chen, L
    2001 4TH INTERNATIONAL CONFERENCE ON ASIC PROCEEDINGS, 2001, : 262 - 265
  • [33] Analog neural network for support vector machine learning
    Perfetti, Renzo
    Ricci, Elisa
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (04): : 1085 - 1091
  • [34] NESP2: a low power analog NEural signal processor with analog weight storage
    Costa, M
    Palmisano, D
    Pasero, E
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL IV, 2000, : 51 - 56
  • [35] LONG-TERM CMOS STATIC STORAGE CELL PERFORMING AD/DA CONVERSION FOR ANALOG NEURAL-NETWORK IMPLEMENTATIONS
    HEIM, P
    JABRI, MA
    ELECTRONICS LETTERS, 1994, 30 (25) : 2124 - 2125
  • [36] Adaptive momentum with discriminative weight for neural network stochastic optimization
    Bai, Jiyang
    Ren, Yuxiang
    Zhang, Jiawei
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) : 6531 - 6554
  • [37] Learning the Error Features of Approximate Multipliers for Neural Network Applications
    Mo, Hai
    Wu, Yong
    Jiang, Honglan
    Ma, Zining
    Lombardi, Fabrizio
    Han, Jie
    Liu, Leibo
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (03) : 842 - 856
  • [38] MULTILEVEL ARTIFICIAL NEURAL NETWORK TRAINING FOR SPATIALLY CORRELATED LEARNING
    Scott, C. B.
    Mjolsness, Eric
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : S297 - S320
  • [39] NVM Weight Variation Impact on Analog Spiking Neural Network Chip
    Nomura, Akiyo
    Ito, Megumi
    Okazaki, Atsuya
    Ishii, Masatoshi
    Kim, Sangbum
    Okazawa, Junka
    Hosokawa, Kohji
    Haensch, Wilfried
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VII, 2018, 11307 : 676 - 685
  • [40] A STOCHASTIC-MODEL OF NEURAL NETWORK FOR UNSUPERVISED LEARNING
    BENAIM, M
    EUROPHYSICS LETTERS, 1992, 19 (03): : 241 - 246